Skip to main content

Advertisement

Log in

Climate change impacts of legume-grass swards: implications for organic farming in the Federal State of Brandenburg, Germany

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Multispecies legume-grass swards (LGS) within crop rotations are the primary source for nitrogen and livestock forage in organic farming systems (OFS) in Europe. At the same time, LGS are very susceptible to the effects of climate change on OFS in dryer regions. In order to predict changes in annual and seasonal LGS yields, the number and dates of LGS cuts and drought impact, an empirical statistical yield model based on alfalfa (A) and red clover (B) was applied to two of the driest areas within Germany: the ‘Spreewald’ (SP), with sandy soils only suited for red clover and the ‘Uckermark’ (UM) with sandy loams. Weather data series from 1972 to 2008 and two regional warming scenarios for 2062–2092, namely ‘Dry’ and ‘Wet’, were used to calculate the impacts. Only the scenario ‘Dry’ predicts an annual yield reduction (about 20 %), for both regions. This impact can be attributed to (1) the first cut is early by four weeks (decreasing the yield by 0.5 t ha−1), (2), the third cut is often delayed (caused by water deficiency) and (3) eventual impracticality of a fourth cut. In contrast, the second cut increased by 1 t ha−1 for ‘Wet’. In SP, frequent severe drought impacts are predicted for red clover LGS. This deleterious impact of the ‘Dry’ scenario can be partially compensated only in UM when alfalfa is used, which showed lower susceptibility to drought. Along with the predicted yield reduction, an increased vulnerability of organic farms in both study regions cannot be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. BBCH code for phenological observations: Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie (Federal Biological Research Centre for Agriculture and Forestry, Federal Office of Plant Varieties, Chemical Industry). Strauß et al. (1994).

References

  • Addiscott TM, Whitmore AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J Agr Sci 109:141–157

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Article  Google Scholar 

  • Bachinger J, Reining E (2009) An empirical statistical model for predicting the yield of herbage from legume-grass swards within organic crop rotations based on cumulative water balances. Grass Forage Sci 64:144–159

    Article  Google Scholar 

  • Biesbroek GR, Swart RJ, Carter TR, Cowan C, Henrichs T, Mela H et al (2010) Europe adapts to climate change: comparing national adaptation strategies. Glob Environ Chang 20:440–450

    Article  Google Scholar 

  • Bloch R, Bachinger J (2012) Assessing the vulnerability of organic farming systems: a case study from the Federal State of Brandenburg, Germany. In IFSA 12 (eds) Producing and reproducing farming systems: new modes of organisation for sustainable food systems of tomorrow. Book of Abstracts, Aarhus Denmark, pp 53–54

  • Chmielewski FM, Müller A, Küchler W (2005) Possible impacts of climate change on natural vegetation in Saxony (Germany). Int J Biometeorol 50:96–104

    Article  Google Scholar 

  • DVWK (ed.) (1996) Ermittlung der Verdunstung von Land-und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238, Wirtschafts-und Verl.-Ges, Bonn, pp. 38–39

  • Ernst P, Loeper EG (1976) Temperaturentwicklung und vegetationsbeginn auf dem Grünland. Das wirtschaftseigene Futter 22:5–12

    Google Scholar 

  • Gallopin GC (2006) Linkages between vulnerability, resilience, and adaptive capacity. Glob Environ Chang 16:293–303

    Article  Google Scholar 

  • Gerstengarbe F-W, Badeck F-W, Hattermann F, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven. Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

  • Geyer J, Strixner L, Kreft S, Ibisch PL (2014) Adapting conservation to climate change: a case study on feasibility and implementation in Brandenburg. Reg Environ Chang, Germany. doi:10.1007/s10113-014-0609-9

    Google Scholar 

  • Gujer H (1997) Futterleguminosen. In: Keller ER, Hanus H, Heyland KU (eds) Grundlagen der landwirtschaftlichen Pflanzenproduktion. Ulmer, Stuttgart, Germany, pp 759–802

    Google Scholar 

  • Haggenmüller K, Luthardt V (2009) Pflanzenphänologische Veränderungen als Folge von Klimawandel in unterschiedlichen Regionen Brandenburgs. Phänologie-J 33:1–3

    Google Scholar 

  • Hauptvogel P (2003) Strategy of lucerne breeding to abiotic stress. Czech J Genet Plant Breed 39:163–167

    Google Scholar 

  • Haynes RJ (1980) Competitive aspects of the grass-legume association. Adv Agron 33:227–261

    Article  Google Scholar 

  • Heß J (1989) Kleegrasumbruch im Organischen Landbau: Stickstoffdynamik im Fruchtfolgeglied Kleegras - Kleegras - Weizen - Roggen. Dissertation, University of Bonn

  • Hopkins A, Del Prado A (2007) Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass Forage Sci 62:118–126

    Article  CAS  Google Scholar 

  • INKA BB (Innovation Network of Climate Change Adaptation Brandenburg Berlin) (2014) http://www.inka-bb.de/. Accessed 29 May 2014

  • IPCC (2007) Climate Change 2007: Synthesis report. Contribution of working groups I, II and III to the Fourth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland

  • Jørgensen SE, Kamp-Nielsen L, Christensen T, Windolf-Nielsen J, Westergaard B (1986) Validation of a prognosis based upon a eutrophication model. Ecol Model 32:165–182

    Article  Google Scholar 

  • Khanduri VP, Sharma CM, Singh SP (2008) The effects of climate change on plant phenology. Environmentalist 28:143–147

    Article  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2-enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • LDS (2005) Ernteberichterstattung über Feldfrüchte und Grünland im Land Brandenburg 2004. Landesbetrieb für Datenverarbeitung und Statistik Land Brandenburg (eds). Statistischer Bericht C II 1 - J/04, Potsdam, Germany

  • Linke C, Grimmert S, Hartmann I, Reinhardt K (2010) Auswertung regionaler Klimamodelle für das Land Brandenburg. LUA (Landesumweltamt), Potsdam, Germany

  • Lüscher A, Hartwig UA, Suter D, Nösberger J (2000) Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Glob Change Biol 6:655–662

    Article  Google Scholar 

  • Lütke Entrup N, Oehmichen J (2006) Lehrbuch des pflanzenbaus. Band 1: Grundlagen. AgroConcept. Bonn, Germany

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263

    Article  Google Scholar 

  • Menzel A (2007) Phänologische Modelle. Promet 33:20–27

    Google Scholar 

  • Menzel A, Spark TH, Estrella N, Koch E, Aasa A, Ahas R et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Neubert K, Priebe R (2013) Standort- und Artenkenntnis erleichtert die Mischungswahl für Grünland und ausdauerndes Ackerfutter auf trockenen Standorten. Landesamt für Ländliche Entwicklung Landwirtschaft und Flurneuordnung (LELF). http://lelf.brandenburg.de/sixcms/detail.php/bb1.c.208978.de. Accessed 30 Nov 2013

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Orlowsky B, Gerstengarbe FW, Werner P (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92:209–223

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press. Cambridge, UK

  • Peterson PR, Sheaffer CC, Hall M (1992) Drought effects on perennial forage legume yield and quality. Agron J 84:774–779

    Article  Google Scholar 

  • Reyer C, Bachinger J, Bloch R, Hattermann FF, Ibisch PL, Kreft S et al (2012) Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Reg Environ Chang 12:523–542

    Article  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    Article  CAS  Google Scholar 

  • Soltani A, Sinclair TR (2012) Phenology-Temperature. In: Soltani A, Sinclair TR (eds) Modeling physiology of crop development, growth and yield. CABI, Oxfordshire, pp 55–72

    Chapter  Google Scholar 

  • Stein-Bachinger K, Fuchs S (2012) Protection strategies for farmland birds in legume-grass leys as trade-offs between nature conservation and farmers’ needs. Organ Agr 2:145–162

    Article  Google Scholar 

  • Strauß R, Bleiholder H, van den Bomm T, Buhr L, Hack H, Heß M, Klose R, Meier U, Weber E (1994) Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen. Erweiterte BBCH-Skala, Basel

    Google Scholar 

  • Tan DKY, Birch CJ, Wearing AH, Rickert KG (2000) Predicting broccoli development. I. Development is predominantly determined by temperature rather than photoperiod. Sci Hortic Amsterdam 84:227–243

    Article  Google Scholar 

  • Topp CFE, Doyle CJ (2004) Modelling the comparative productivity and profitability of grass and legume systems of silage production in northern Europe. Grass Forage Sci 59:274–292

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Werner PC, Gerstengarbe FW (1997) Proposal for the development of climate scenarios. Climate Res 8:171–182

    Article  Google Scholar 

  • Zanetti S, Hartwig U, Lüscher A, Hebeisen T, Frehner M, Fischer B et al (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Federal Ministry of Education and Research (BMBF), Germany; the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Germany; and the Ministry of Science, Research and Culture (MWFK), Brandenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Bloch.

Additional information

Editor: Will Steffen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, R., Wechsung, F., Heß, J. et al. Climate change impacts of legume-grass swards: implications for organic farming in the Federal State of Brandenburg, Germany. Reg Environ Change 15, 405–414 (2015). https://doi.org/10.1007/s10113-014-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0656-2

Keywords

Navigation