Skip to main content

Advertisement

Log in

Impacts of climate change on the distribution of species and communities in the Chilean Mediterranean ecosystem

Regional Environmental Change Aims and scope Submit manuscript

Abstract

The Mediterranean region of Chile is considered a biodiversity hot spot. An increase in temperature and decrease in precipitation, as projected for the end of this century by global circulation models, would likely change the distribution of the sclerophyllous thorny shrubland and woodland. In order to assess those potential impacts, the MAXENT algorithm was used to project potential changes in the distribution of the Mediterranean ecosystem. Ecological niche models were fitted and used to project the potential distribution of these forest ecosystems by the end of the century. Projections were made using data from the PRECIS model for the A2 and B2 climate change scenarios and two strategies of occupancy: free migration and non-migration. Distribution models of sclerophyllous, woodland and shrubland performed accurately representing current species’ distribution. When we assume non-migration responses under climate change scenarios, results reveal a decrease in the distribution area for all the species. The areas where the highest reduction in a suitable environment was found are located along the coastline, where higher temperature increases have been projected. For native ecosystems from the Andean Range region, such as communities dominated by thorny species, a stable habitat was found, associated with a higher adaptation capability to future climatic projections. Hence, in the future, buffer zones originated by “topo-climatic” conditions might play a key role in protecting Central Chile biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Algar AC, Kharouba HM, Young ER, Kerr JT (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32:22–33

    Article  Google Scholar 

  • Arroyo MTK, Armesto J, Squeo F, Gutiérrez J (1993) Global change: the flora and vegetation of Chile. In: Mooney H, Fuentes E, Kronberg BI (eds) Earth system response to global change: contrast between North and South America. Academic Press, San Diego, pp 239–263

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Benito BM, Martínez-Ortega MM, Muñoz LM, Lorite J, Peñas J (2009) Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodivers Conserv 18:2509–2520

    Article  Google Scholar 

  • Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the mediterranean basin human and non-human determinants. In: Richardson DM, Davis GW (eds) Mediterranean-type ecosystems the function of biodiversity. Springer, Berlin, pp 43–119

    Chapter  Google Scholar 

  • Boubli JP, de Lima MG (2009) Modeling the geographical distribution and fundamental niches of Cacajao spp and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. Int J Primatol 30:217–228

    Article  Google Scholar 

  • Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Milá B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35:1160–1176

    Article  Google Scholar 

  • Busby JR (1991) BIOCLIM—A bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis, Chapter 10. CSIRO, Melbourne

    Google Scholar 

  • CONAF (1999) Catastro y Evaluación de los Recursos Vegetacionales Nativos de Chile Santiago, Chile

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plan diversity in mediterranean-climate region. Tree 11:362–366

    CAS  Google Scholar 

  • del Barrio G, Harrison PA, Berry PM, Butt N, Sanjuan ME, Pearson RG, Dawson T (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy. Environ Sci Policy 9:129–147

    Google Scholar 

  • del Fierro P (1998) Experiencia silvicultural del bosque nativo de Chile Recopilación de antecedentes para 57 especies arbóreas y evaluación de prácticas silviculturales Chile, 420 pp.

  • DGF-CONAMA (2007) Estudio de la variabilidad climática en Chile para el siglo XXI Santiago, Chile

  • Di Castri F (1973) Climatographical comparisons between Chile and the western coast of North America. In: Di Castri F, Mooney HA (eds) Mediterranean-type ecosystems. Springer, Berlin, pp 21–36

    Chapter  Google Scholar 

  • Di Castri F, Hajek E (1976) Bioclimatología de Chile. Universidad Católica de Chile, Santiago 128 pp

    Google Scholar 

  • Donoso C (2005) Árboles nativos de Chile Guía de reconocimiento Edición 4 Marisa Cuneo Ediciones. Valdivia, Chile 136 pp

    Google Scholar 

  • Dudík M, Phillips SJ, Schapire RE (2007) Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. J Mach Learn Res 8:1217–1260

    Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve predictions of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudik M, En Chee Y, Colin Y (2011) A statistical explanation of MaxEnt for Ecologist. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Evangelista P, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman JB III, Barnett D (2008) Modelling invasion for an habitat generalist and a specialist plant species. Divers Distrib 14:808–817

    Article  Google Scholar 

  • Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the southeast pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:1–16

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price JT et al (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 211–272

    Google Scholar 

  • Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob Change Biol 14:1337–1352

    Article  Google Scholar 

  • Franklin J (1998) Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. J Veg Sci 9:733–748

    Article  Google Scholar 

  • Fuentes ER, Muñoz MR (1995) The human role in changing landscapes in central Chile: implications for intercontinental comparisons. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer-Verlag, New York, pp 401–417

  • Gajardo R (1994) La Vegetación Natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, Santiago 165 pp

    Google Scholar 

  • Goodchild MF, Parks BO, Steyaert LT (1993) Environmental modeling with GIS. Oxford University Press, Oxford, pp 488

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill K, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci USA 101(34):12422–12427

    Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:1–10

    Article  Google Scholar 

  • Hoffmann A (1998) Flora Silvestre de Chile, Zona Central Edición 4 Fundación Claudio Gay, Santiago 254 pp

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Ishida T, Kawashima S (1993) Use of co-kriging to estimate surface air temperature from elevation. Theoret Appl Climatol 47:147–157

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  • Köeppen W (1931) Die Klimate der Erder, Grundriss der Klimakunde, 2nd ed. Berlin

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Lavorel S, Canadell J, Rambal S, Terradas J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Glob Ecol Biogeogr 7:157–166

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Loiselle BA, Jřrgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, Montiel OM (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis Bioclimática y Vegetacional de Chile First edition. Editorial Universitaria, Santiago 316 pp

    Google Scholar 

  • Marino H (2002) Respuestas ecofisiológicas de plantas de ecosistemas de zonas con clima mediterráneo y ambientes de altamontaña. Revista Chilena de Historia Natural 75:625–637

    Google Scholar 

  • McLachlan JS, Clark J, Manos P (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  • Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Mo Bot Gard 84:112–127

    Article  Google Scholar 

  • Montenegro G (2000) Chile, Nuestra Flora Útil Guía de Uso Apícola, Alimentario, Medicinal Folclórico, Artesanal y Ornamental Colección en Agricultura Ediciones Universidad Católica de Chile Santiago, Chile 267 pp

  • Mooney HA, Dunn EL (1970) Photosynthetic systems of mediterranean-climate shrubs and trees of California and Chile. Am Nat 104:447-453

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York 547 pp

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Kram T (2000) IPCC special report on emissions scenarios (SRES)

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113

    Article  Google Scholar 

  • Pearson RG, Dawson TE (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–372

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson R, Shapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pliscoff P (2002) Priorización de áreas para fortalecer la conservación de la flora arbórea nativa en la zona mediterránea de Chile M Sc Thesis, Universidad de Chile, Santiago de Chile

  • Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products, Technical Report JPL D-31639. Jet Propulsion Laboratory, Pasadena 143 pp

    Google Scholar 

  • Rundel P (1998) Landscape disturbance in mediterranean-type ecosystem: an overview. In: Rundel P, Montenegro G, Jacsic F (eds) Landscape disturbance and biodiversity in mediterranean-type ecosystems. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzing A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy Poff N, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

  • Shelford VE (1931) Some concepts of bioecology. Ecology 12:455–467

    Article  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sc 13:143–158

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–147

    Article  CAS  Google Scholar 

  • Thuiller W, Araújo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Biodiversity conservation: uncertainty in predictions of extinction risk. Nature 430 (6995)

  • Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Willis KJ, Bhagwat SA (2009) Biodiversity and climate change. Science 326:806–807

    Article  CAS  Google Scholar 

  • Woodward SL (2003) Biomes of Earth: terrestrial, aquatic, and human-dominated. Greenwood Press, California, pp 435

  • Yost AC, Petersen SL, Gregg M, Miller R (2008) Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using maximum entropy and a long-term dataset from southern Oregon. Ecol Inform 3:375–386

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) SGP-HD #003 which is supported by the US National Science Foundation (Grant GEO-0642841) and with the aid of FONDECYT throughout Grant 1090393. We thank Dr. Thomas Fox and Dr. Pablo Becerra for their valuable comments and suggestions that have improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bambach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bambach, N., Meza, F.J., Gilabert, H. et al. Impacts of climate change on the distribution of species and communities in the Chilean Mediterranean ecosystem. Reg Environ Change 13, 1245–1257 (2013). https://doi.org/10.1007/s10113-013-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0425-7

Keywords

Navigation