Skip to main content

Advertisement

Log in

Temporal patterns of road network development in the Brazilian Amazon

Regional Environmental Change Aims and scope Submit manuscript

Abstract

The Brazilian Amazon is a globally important ecosystem that is undergoing rapid development and land-use change. Roads are a key spatial determinant of land-use conversion and strongly influence the rates and patterns of habitat loss and represent a key component of models that attempt to predict the spatio-temporal patterns of Amazonian land-use change and the consequences of such changes. However, the spatio-temporal patterns of road network development are poorly understood and seldom quantified. Here, we used manually digitised satellite imagery at multiple temporal and spatial scales across the Brazilian Amazon to quantify and model the rate at which road networks are proliferating. We found that the road network grew by almost 17,000 km per year between 2004 and 2007. There was large spatial variation in road network density, with some municipalities having road densities as high as 0.5 km/km2, and road network growth rates were highest in municipalities with an intermediate road network density. Simulations indicated that road network development within municipalities follows a logistic growth pattern through time, with most of the development occurring within a 39-year time period. This time period is similar to those of other boom and bust development dynamics observed in the Brazilian Amazon. Understanding the temporal patterns of road development will aid the development of better predictive land-use change models for the Amazon, given the key importance of roads as a predictor of deforestation in many existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves DS (2002) Space-time dynamics of deforestation in Brazilian Amazon. Int J Remote Sens 23:2903–2908

    Article  Google Scholar 

  • Araujo C, Bonjean CA, Combes J, Motel PC, Reis EJ (2009) Property rights and deforestation in the Brazilian Amazon. Ecol Econ 68:2461–2468

    Article  Google Scholar 

  • Arima EY, Walker RT, Perz SG, Caldas M (2005) Loggers and forest fragmentation, behavioural models of road building in the Amazon basin. Annu Assoc Am Geogr 95:525–541

    Article  Google Scholar 

  • Arima EY, Walker RT, Sales M, Souza C, Perz SG (2008) The fragmentation of space in the Amazon basin, emergent road networks. Photogramm Eng Remote Sens 24:699–709

    Google Scholar 

  • Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with space borne imaging spectroscopy. PNAS 101:6039–6044

    Article  CAS  Google Scholar 

  • Barlow J, Ewers RM, Anderson L, Aragao LEOC, Baker TR, Boyd E, Feldpausch TR, Gloor E, Hall A, Malhi Y, Milliken W, Mulligan M, Parry L, Pennington T, Peres CA, Phillips OL, Roman-Cuesta RM, Tobias JA, Gardner TA (2011) Using learning networks to understand complex systems, a case study of biological, geophysical and social research in the Amazon. Biol Rev 86:457–474

    Article  Google Scholar 

  • Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776

    Article  Google Scholar 

  • Blom A, van Zalinge R, Heitkonig IMA, Prins HHT (2005) Factors influencing the distribution of large mammals within a protected central African forest. Oryx 39:381–388

    Article  Google Scholar 

  • Bonan GB (2008) Foresta and climate change, forcings, feedbacks and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  Google Scholar 

  • Bradshaw CJA, Sodhi NS, PehK SH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13:2379–2395

    Article  Google Scholar 

  • Brandao AO, Souza CM (2006) Mapping unofficial roads with Landsat images, a new tool to improve the monitoring of the Brazilian Amazon Forest. Int J Remote Sens 27:177–189

    Article  Google Scholar 

  • Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323

    Article  Google Scholar 

  • Carpentier CL, Vosti SA, Witcover J (2000) Intensified, production systems on western Brazilian Amazonian farms, could they save the forest? Agric Ecosyst Environ 82:73–88

    Article  Google Scholar 

  • Carvalho GO, Nepstead D, McGrath D, del Carmen Vera Diaz M et al (2002) Frontier expansion in the Amazon. Environment 44:34–45

    Article  Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust, sustainability of agro forests and opportunities for biodiversity conservation. Conserv Lett 2:197–205

    Article  Google Scholar 

  • Dale VH, O’Neill RV, Southworth F, Pedlowski M (1994) Modelling effects of land management in the Brazilian settlement of Rodonia. Conserv Biol 8:196–206

    Article  Google Scholar 

  • de Barros Ferraz S, Vettorazzi CA, Theobald DM, Bellester MVR (2005) Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondonia. Brazil Assess Future Scenarios For Ecol Manag 204:67–83

    Google Scholar 

  • deKoning GHJ, Veldkamp A, Fresco LO (1999) Exploring changes in Ecuadorian land use for food production and their effects on natural resources. J Environ Manag 57:221–237

    Article  Google Scholar 

  • Delgado JD, Arroyo NL, Arevalo JR, Fernandez-Palacios JM (2007) Edge effects of roads on temperature, light, canopy cover and canopy height in laurel and pine forests Tenerife, Canary Islands. Landsc Urban Plan 81:328–340

    Article  Google Scholar 

  • Dyer S, O’Neill JP, Wasel SM, Boutin S (2002) Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can J Zool 80:839–845

    Article  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2008) The relative importance of road traffic and forest cover on anuran populations. Biol Conserv 141:35–46

    Article  Google Scholar 

  • Etter A, McAlpine C, Wilson K, Phinn S, Possingham H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Continuous response functions for quantifying the strength of edge effects. J Appl Ecol 43:527–536

    Article  Google Scholar 

  • Ewers RM, Laurance WF, Souza CM Jr (2008) Temporal fluctuations in Amazonian deforestation rates. Environ Conserv 35:303–310

    Article  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance, an empirical review and synthesis. Ecol Soc 14 (article 21)

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia, history, rates and consequences. Conserv Biol 19:680–688

    Article  Google Scholar 

  • Fearnside PM (2008) The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecol Soc 13:23–45

    Google Scholar 

  • Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon, threats to wilderness, biodiversity, and indigenous people. PLoS ONE 3:e2932

    Article  Google Scholar 

  • Foley JA, Asner GP, Costa MH, Coe MT, DeFries R, Gibbs HK, Howard EA, Olsen S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed, forest degradation and the loss of ecosystem goods and services in the Amazon basin. Frontiers Ecol Environ 5:25–32

    Article  Google Scholar 

  • Forman RTT (1998) Road ecology, a solution for the giant embracing us. Landsc Ecol 13:3–5

    Article  Google Scholar 

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall AP, Dale VH, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology science and solutions. Island Press, Washington

    Google Scholar 

  • Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol 147:21–35

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52:143–150

    Article  Google Scholar 

  • Godfrey BJ (1990) Boom towns of the Amazon. Am Geogr Soc 80:103–117

    Google Scholar 

  • Goosem M (2007) Fragmentation impacts caused by roads through forests. Curr Sci 93:1587–1595

    Google Scholar 

  • Honu YAK, Gibson DJ (2006) Microhabitat factors and the distribution of exotic species across forest edges in temperate deciduous forest of southern Illinois, USA. J Torrey Bot Soc 133:255–266

    Article  Google Scholar 

  • IPEA (2012) www.ipea.gov.br

  • Jepson W (2006) Private agricultural colonization on a Brazilian frontier, 1970–1980. J Hist Geogr 32:839–863

    Article  Google Scholar 

  • Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, Kschischo M (2010) Grofit, fitting biological growth curves with R. J Stat Softw 33:1–21. URL: http://www.jstatsoft.org/v33/i07/

    Google Scholar 

  • Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc 270:417–423

    Article  CAS  Google Scholar 

  • Kirby KR, Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Bergen S, Venticinque EM, da Costa C (2006) The future of deforestation in the Brazilian Amazon. Futures 38:432–453

    Article  Google Scholar 

  • Koenker R (2010) Quantreg, quantile regression. R package, version 4.53. http://CRAN.R-project.org/package=quantreg

  • Laporte NT, Stabach JA, Grosch R, Lin TS, Goetz SJ (2007) Expansion of industrial logging in central Africa. Science 316:1451

    Article  CAS  Google Scholar 

  • Laurance WF, Cochrance MA, Bergen S, Fearnside PM, Delamonica P, Barber C, D’angelo S, Fernandes T (2001) The future of the Brazilian Amazon. Science 291:438–439

    Article  CAS  Google Scholar 

  • Laurian C, Dussault C, Ouellet J, Courtois R, Poulin M, Breton L (2008) Behaviour of moose relative to a road network. J Wildl Manag 72:1550–1557

    Article  Google Scholar 

  • Li Y, Briggs R (2009) Automatic extraction of roads from high resolution aerial and satellite images with heavy noise. World Acad Sci Eng Technol 54:416–422

    Google Scholar 

  • Loh J, Harmon D (2005) A global index of biocultural diversity. Ecol Ind 5:231–241

    Article  Google Scholar 

  • Ludewigs T, De Oliveira D’Antona A, Brondizio ES, &Hetrick. S (2009) Agrarian structure and land-cover change along the lifespan of three colonization areas in the Brazilian Amazon. World Dev 37:1348–1359

    Article  Google Scholar 

  • Macedo DS, Anderson AB (1993) Early ecological changes associated with logging in an Amazon floodplain. Biotropica 25:151–163

    Article  Google Scholar 

  • Maki S, Kalliola R, Vuorinen K (2001) Road construction in the Peruvian Amazon; processes, causes and consequences. Environ Conserv 28:199–214

    Article  Google Scholar 

  • Malhi Y, Roberts T, Betts RA, Kelleen TJ, Li W, Nobre CA (2008) Climate change, deforestation and the fate of the Amazon. Science 319:169–172

    Article  CAS  Google Scholar 

  • McGregor RL, Bender DJ, Fahrig L (2008) Do small mammals avoid roads because of the traffic? J Appl Ecol 45:117–123

    Article  Google Scholar 

  • Mena JB (2003) State of the art on automatic road extraction for GIS update a novel classification. Pattern Recogn Lett 24:3037–3058

    Article  Google Scholar 

  • Mena CF, Walsh SJ, Frizzelle BG, Xiaozheng Y, Malanson GP (2011) Land use change on household farms in the Ecuadorian Amazon, design and implementation of an agent based model. Appl Geogr 31:210–222

    Article  Google Scholar 

  • Messina JP, Walsh SJ (2001) 2.5D morphogenesis, modelling landuse and landcover dynamics in the Ecuadorian Amazon. Plant Ecol 156:75–88

    Article  Google Scholar 

  • Michalski F, Peres CA, Lake IR (2008) Deforestation dynamics in a fragmented region of southern Amazonia, evaluation and future scenarios. Environ Conserv 35:93–103

    Article  Google Scholar 

  • Moreira E, Costa S, Aguiar AP, Camara G, Carneiro T (2009) Dynamical coupling of multiscale land change models. Landsc Ecol 24:1183–1194

    Article  Google Scholar 

  • Morton DC, DeFries R, Shimabukuro YE, Anderson LO, Arai E, Espirito-Santo FDB, Freitas R, Morisette J (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc Natl Acad Sci USA 103:14637–14641

    Article  CAS  Google Scholar 

  • Movaghati S, Moghaddamjoo A, &Tavakoli. A (2010) Road extraction from satellite images using particle filtering and extended Kalman filtering. IEEE Trans Geosci Remote Sens 48:2807–2817

    Article  Google Scholar 

  • Muller R, Muller D, Schierhorn F, Gerold G (2010) Spatiotemporal modelling of the expansion of mechanised agriculture in the Bolivian lowland forests. Appl Geogr 31:631–640

    Article  Google Scholar 

  • Perz SG, Caldas MM, Arima E, Walker RJ (2007) Unofficial road building in the Amazon, socio-economic and biophysical explanations. Dev Change 38:529–551

    Article  Google Scholar 

  • Perz S, Brilhante S, Brown F, Caldas M, Ikeda S, Mendoza E, Overdevest C, Reis V, Reyes JF, Rojas D, Schmink M, Souza C, Walker R (2008) Road building, land use and climate change, prospects for environmental governance in the Amazon. Philos Trans R Soc B 363:1889–1895

    Article  Google Scholar 

  • Potvin MJ, Drummer TD, Vucetich JA, Beyer DE, Peterson RO, Hammill JH (2005) Monitoring and habitat analysis for wolves in upper Michigan. J Wildl Manag 69:1660–1669

    Article  Google Scholar 

  • R Development Core Team (2009) R, a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richardson JH, Shore RF, Treweek JR, Larkin SBC (1997) Are major roads a barrier to small mammals? J Zool 243:840–846

    Article  Google Scholar 

  • Rico A, Kindlmann P, Sedlacek F (2007) Barrier effects of roads on movements of small mammals. Folia Zool 56:1–12

    Google Scholar 

  • Rodrigues ASL, Ewers RM, Parry L, Souza C Jr, Verissimo A, Balmford A (2009) Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324:1435–1437

    Article  CAS  Google Scholar 

  • Rydell J (1992) Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 6:744–750

    Article  Google Scholar 

  • Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Dinamica a stochastic cellular automata model designed to simulate landscape dynamics in an Amazon colonisation frontier. Ecol Model 154:217–235

    Article  Google Scholar 

  • Soares-Filho B, Nepstead DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schelsinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523

    Article  CAS  Google Scholar 

  • Taaffe EJ, Morrill RL, Gould PR (1963) Transport expansion in underdeveloped countries; a comparative analysis. Am Geogr Soc 53:503–529

    Google Scholar 

  • Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  • Walker R, Drzyzga SA, Li Y, Qi J, Caldas M, Arima E, Vergara JP (2004) A behavioural model of landscape change in the Amazon, basin, the colonist case. Ecol Appl 14:299–312

    Article  Google Scholar 

  • Walsh SJ, Messina JP, Mena CF, Malanson GP, Page PH (2008) Complexity theory, spatial simulation models and land use dynamics in the Northern Ecuadorian Amazon. Geoforum 39:867–878

    Article  Google Scholar 

  • Wassenaar T, Gerber P, Verburg PH, Rosales M, Ibrahim M, Steinfeld H (2007) Projecting land use changes in the neo-tropics, the geography of pasture expansion into forest. Glob Environ Change 17:86–104

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Grantham Institute for Climate Change and Microsoft Research for funding this work, and IMAZON (Instituto do Homem e Ambiente da Amazônia) for providing the Amazon wide road maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia E. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.E., Souza, C.M., Riberio, J. et al. Temporal patterns of road network development in the Brazilian Amazon. Reg Environ Change 13, 927–937 (2013). https://doi.org/10.1007/s10113-012-0397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0397-z

Keywords

Navigation