, Volume 85, Issue 2, pp 397-406

Stability of solutions to parameterized nonlinear complementarity problems

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

n

such that x≥0,  F(x,u)-v≥0 , and F(x,u)-v T·x=0 where these are vector inequalities. We characterize the local upper Lipschitz continuity of the (possibly set-valued) solution mapping which assigns solutions x to each parameter pair (v,u). We also characterize when this solution mapping is locally a single-valued Lipschitzian mapping (so solutions exist, are unique, and depend Lipschitz continuously on the parameters). These characterizations are automatically sufficient conditions for the more general (and usual) case where v=0. Finally, we study the differentiability properties of the solution mapping in both the single-valued and set-valued cases, in particular obtaining a new characterization of B-differentiability in the single-valued case, along with a formula for the B-derivative. Though these results cover a broad range of stability properties, they are all derived from similar fundamental principles of variational analysis.

Received March 30, 1998 / Revised version received July 21, 1998 Published online January 20, 1999