Skip to main content
Log in

Continuous relaxation for discrete DC programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Discrete DC programming with convex extensible functions is studied. A natural approach for this problem is a continuous relaxation that extends the problem to a continuous domain and applies the algorithm in continuous DC programming. By employing a special form of continuous relaxation, which is named “lin-vex extension,” the produced optimal solution of the extended continuous relaxation coincides with the solution of the original discrete problem. The proposed method is demonstrated for the degree-concentrated spanning tree problem, the unfair flow problem, and the correlated knapsack problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://snap.stanford.edu/data/ For other real-world networks in this collection, we performed the same experiments, to obtain similar results.

  2. http://www.diku.dk/~pisinger/codes.html.

References

  1. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4, 1–106 (2012)

    Article  MATH  Google Scholar 

  2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca Oper. 53, 3–44 (1990)

    Google Scholar 

  4. Fujishige, S.: Submodular Functions and Optimization. 2nd ed., Ann. Discret. Math., vol. 58, Elsevier, Amsterdam (2005)

  5. Fujishige, S.: Bisubmodular polyhedra, simplicial divisions, and discrete convexity. Discret. Optim. 12, 115–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  7. Hoai An, L.T., Tao, P.D.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50, 93–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Horst, R., Thoai, N.V.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  9. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  11. Iyer, R., Jegelka, S., Bilmes J.: Fast semidifferential-based submodular function optimization. In: Proceedings of the 30th International Conference on Machine Learning, pp. 855–863 (2013)

  12. Katoh, N., Shioura, A., Ibaraki, T.: Resource Allocation Problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, vol. 5, 2nd edn, pp. 2897–2988. Springer, Berlin (2013)

    Chapter  Google Scholar 

  13. Kawahara, Y., Washio, T.: Prismatic algorithm for discrete D.C. programming problem. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems, pp. 2106–2114 (2011)

  14. Kobayashi, Y.: The complexity of minimizing the difference of two M\({}^\natural \)-convex set functions. Op. Res. Lett. 43, 573–574 (2015)

    Article  MathSciNet  Google Scholar 

  15. Larsson, M.O., Ugander, J.: A concave regularization technique for sparse mixture models. Adv. Neural Inf. Process. Syst. 24, 1890–1898 (2011)

    Google Scholar 

  16. Lemke, P.: The maximum leaf spanning tree problem for cubic graphs is NP-complete, IMA Preprint Series #428, University of Minnesota (1988)

  17. Maehara, T., Murota, K.: A framework of discrete DC programming by discrete convex analysis. Math. Program. Ser. A 152, 435–466 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moriguchi, S., Shioura, A., Tsuchimura, N.: M-convex function minimization by continuous relaxation approach–Proximity theorem and algorithm. SIAM J. Optim. 21, 633–668 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moriguchi, S., Tsuchimura, N.: Discrete L-convex function minimization based on continuous relaxation. Pac. J. Optim. 5, 227–236 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  21. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, Chapter 11, pp. 219–260. Springer, Berlin (2009)

    Chapter  Google Scholar 

  22. Narasimhan, M., Bilmes, J.: A submodular-supermodular procedure with applications to discriminative structure learning. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 404–412 (2005)

  23. Niu, Y.S., Tao, P.D.: A DC programming approach for mixed-integer linear programs. Model. Comput. Optim. Inf. Syst. Manage. Sci. Commun. Comput. Inf. Sci. 14, 244–253 (2008)

    MATH  Google Scholar 

  24. Pardalos, P.M.: On the passage from local to global in optimization. In: Birge, J.R., Murty, K.G. (eds.) Mathematical Programming: State of the Art 1994, pp. 200–247. The University of Michigan, Ann Arbor (1994)

    Google Scholar 

  25. Pardalos, P.M., Prokopyev, O., Busygin, S.: Continuous approaches for solving discrete optimization problems. In: Appa, G., Pitsoulis, L., Williams, H.P. (eds.) Handbook on Modelling for Discrete Optimization, pp. 39–60. Springer, Berlin (2006)

    Chapter  Google Scholar 

  26. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discret. Appl. Math. 151, 229–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tanenbaum, A.S.: Computer Networks, 5th edn. Prentice Hall, Upper Saddle River, New Jersey (2010)

    MATH  Google Scholar 

  28. Tao, P.D., El Bernoussi, S.: Duality in D.C. (difference of convex functions) optimization: Subgradient methods. In: Hoffman, K.H., Zowe, J., Hiriart-Urruty, J.B., Lemaréchal, C. (eds.) Trends in Mathematical Optimization, International Series of Numerical Mathematics, vol. 84, pp. 277–293. Birkhäuser, Basel (1987)

    Google Scholar 

  29. Tao, P.D., Hoai An, L.T.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

  31. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS KAKENHI Grant Numbers 26280004 and 16K16011, by The Mitsubishi Foundation, by CREST, JST, and by JST, ERATO, Kawarabayashi Large Graph Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Maehara.

Additional information

A preliminary version of this paper is included in the Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2015, Metz, May 13–15) — Part I, Advances in Intelligent Systems and Computing, vol.359, Springer, 2015, pp. 181–190.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, T., Marumo, N. & Murota, K. Continuous relaxation for discrete DC programming. Math. Program. 169, 199–219 (2018). https://doi.org/10.1007/s10107-017-1139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1139-2

Mathematics Subject Classification

Navigation