Skip to main content
Log in

Maximum semidefinite and linear extension complexity of families of polytopes

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We relate the maximum semidefinite and linear extension complexity of a family of polytopes to the cardinality of this family and the minimum pairwise Hausdorff distance of its members. This result directly implies a known lower bound on the maximum semidefinite extension complexity of 0/1-polytopes. We further show how our result can be used to improve on the corresponding bounds known for polygons with integer vertices. Our geometric proof builds upon nothing else than a simple well-known property of maximum volume inscribed ellipsoids of convex bodies. In particular, it does not rely on factorizations over the semidefinite cone and thus avoids involved procedures of balancing them as required, e.g., in Briët et al. (Math Program 153(1):179–199, 2015). Moreover, we show that the linear extension complexity of every d-dimensional 0/1-polytope is bounded from above by \( O(\frac{2^d}{d}) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. Math. Program. 153(1), 95–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E.: Disjunctive programming. In: Hammer, P., Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5, pp. 3–51. Elsevier, Amsterdam (1979)

    Google Scholar 

  3. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  4. Briët, J., Dadush, D., Pokutta, S.: On the existence of 0/1 polytopes with high semidefinite extension complexity. Math. Program. 153(1), 179–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. Ann. Oper. Res. 204(1), 97–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fawzi, H., Gouveia, J., Parrilo, P.A., Robinson, R.Z., Thomas, R.R.: Positive semidefinite rank. Math. Program. 153(1, Ser. B), 133–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds. In: Proceedings of the 44th ACM Symposium on Theory of Computing (STOC 2012), pp. 95–106. ACM, New-York (NY), USA (2012)

  8. Fiorini, S., Rothvoß, T., Tiwary, H.R.: Extended formulations for polygons. Discret. comput. geom. 48(3), 658–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goemans, M.X.: Smallest compact formulation for the permutahedron. Math. Program. 153(1), 5–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1, Ser. A), 21–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helton, J.W., Nie, J.: Semidefinite representation of convex sets and convex hulls. In: Handbook on Semidefinite, Conic and Polynomial Optimization, Internat. Ser. Oper. Res. Management Sci., vol. 166, pp. 77–112. Springer, New York (2012)

  13. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85 (2011). http://www.mathopt.org/Optima-Issues/optima85.pdf

  15. Kaibel, V., Weltge, S.: A short proof that the extension complexity of the correlation polytope grows exponentially. Discret. Comput. Geom. 53(2), 396–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kramer, M.R., van Leeuwen, J.: The VLSI complexity of Boolean functions. In: Logic and Machines: Decision Problems and Complexity, pp. 397–407. Springer (1984)

  17. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. In: Proceedings of the 47th ACM Symposium on Theory of Computing (STOC 2015), pp. 567–576. ACM, New-York (NY), USA (2015)

  18. Padrol, A.: Extension complexity of polytopes with few vertices or facets. arXiv:1602.06894 (2016)

  19. Pokutta, S., Van Vyve, M.: A note on the extension complexity of the knapsack polytope. Oper. Res. Lett. 41(4), 347–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997)

    Google Scholar 

  21. Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. Math. Program. 142(1–2), 255–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rothvoß, T.: The matching polytope has exponential extension complexity. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pp. 263–272. ACM, New York (NY), USA (2014)

  23. Scheiderer, C.: Convex hulls of curves of genus one. Adv. Math. 228(5), 2606–2622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1), 59–98 (1949)

    Article  MathSciNet  Google Scholar 

  25. Shitov, Y.: Sublinear extensions of polygons. arXiv:1412.0728 (2014)

  26. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weltge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averkov, G., Kaibel, V. & Weltge, S. Maximum semidefinite and linear extension complexity of families of polytopes. Math. Program. 167, 381–394 (2018). https://doi.org/10.1007/s10107-017-1134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1134-7

Keywords

Mathematics Subject Classification

Navigation