Skip to main content
Log in

Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

When the objective function is not locally Lipschitz, constraint qualifications are no longer sufficient for Karush–Kuhn–Tucker (KKT) conditions to hold at a local minimizer, let alone ensuring an exact penalization. In this paper, we extend quasi-normality and relaxed constant positive linear dependence condition to allow the non-Lipschitzness of the objective function and show that they are sufficient for KKT conditions to be necessary for optimality. Moreover, we derive exact penalization results for the following two special cases. When the non-Lipschitz term in the objective function is the sum of a composite function of a separable lower semi-continuous function with a continuous function and an indicator function of a closed subset, we show that a local minimizer of our problem is also a local minimizer of an exact penalization problem under a local error bound condition for a restricted constraint region and a suitable assumption on the outer separable function. When the non-Lipschitz term is the sum of a continuous function and an indicator function of a closed subset, we also show that our problem admits an exact penalization under an extended quasi-normality involving the coderivative of the continuous function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, J.M.: On the Kuhn–Tucker theorem. In: Abadie, J. (ed.) Nonlinear Programming, pp. 21–36. Wiley, New York (1967)

    Google Scholar 

  2. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135, 255–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22, 1109–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Martinez, J.M., Ramos, A., Silva, P.J.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26, 96–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martinez, J.M., Ramos, A., Silva, P.J.: Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization. http://www.optimization-online.org/DB_FILE/2015/11/5197

  6. Andreani, R., Martinez, J.M., Schuverdt, M.L.: On the relations between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114, 287–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bian, W., Chen, X.: Linearly constrained non-Lipschitz optimization for image restoration. SIAM J. Imaging Sci. 8, 2294–2322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J., Treiman, J., Zhu, Q.: Necessary conditions for constrained optimization problems with semicontinuous and continuous data. Trans. Am. Math. Soc. 350, 2409–2429 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  12. Chen, X., Guo, L., Lu, Z., Ye, J.J.: An augmented Lagrangian method for non-Lipschitz nonconvex programming. SIAM. J. Numer. Anal (in press)

  13. Chen, C., Li, X., Tolman, C., Wang, S., Ye, Y.: Sparse portfolio selection via quasi-norm regularization. arXiv:1312.6350 (2014)

  14. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region newton method for nonlipschitz optimization. SIAM J. Optim. 23, 1528–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  16. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  17. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7, 232–241 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, L., Ye, J.J., Zhang, J.: Mathematical programs with geometric constraints in Banach spaces: enhanced optimality, exact penalty, and sensitivity. SIAM J. Optim. 4, 2295–2319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, L., Zhang, J., Lin, G.H.: New results on constraint qualifications for nonlinear extremum problems and extensions. J. Optim. Theory Appl. 163, 737–754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ioffe, A., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set Val. Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jourani, A., Thibault, L.: The approximate subdifferential of composite functions. Bull. Aust. Math. Soc. 47, 443–456 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kruger, A.Y., Mordukhovich, B.S.: New necessary optimality conditions in problems of nondifferentiable programming. In: Numerical Methods of Nonlinear Programming, pp. 116–119. Kharkov (1979) (in Russian)

  24. Liu, Y.F., Dai, Y.H., Ma, S.: Joint power and admission control: non-convex \(\ell _q\) approximation and an effective polynomial time deflation approach. IEEE Trans. Signal Process. 63, 3641–3656 (2015)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y.F., Ma, S., Dai, Y.H., Zhang, S.: A smoothing SQP framework for a class of composite \(\ell _q\) minimization over polyhedron. Math. Program. 158, 467–500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Minchenko, L., Stakhovski, S.: Parametric nonlinear programming problems under the relaxed constant rank condition. SIAM J. Optim. 21, 314–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  28. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II: Application, Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin (2006)

    Book  Google Scholar 

  29. Mordukhovich, B.S., Shao, Y.H.: Nonsmooth sequential analysis in Asplund space. Trans. Am. Math. Soc. 348, 123–1280 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Study 14, 206–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  32. Wu, Z., Ye, J.J.: Sufficient conditions for error bounds. SIAM J. Optim. 12, 421–435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ye, J.J., Zhang, J.: Enhanced Karush–Kuhn–Tucker condition and weaker constraint qualifications. Math. Program. 139, 353–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their helpful suggestions and comments that have helped us to improve the presentation of the paper. We would also like to thank Jim Burke for a discussion on the topic of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane J. Ye.

Additional information

Dedicated To R. Tyrrell Rockafellar in honor of his 80th birthday.

Lei Guo’s work was supported in part by NSFC Grant (No. 11401379) and the second author’s work was supported in part by NSERC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Ye, J.J. Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs. Math. Program. 168, 571–598 (2018). https://doi.org/10.1007/s10107-017-1112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1112-0

Keywords

Mathematics Subject Classification

Navigation