Skip to main content
Log in

Linear conic formulations for two-party correlations and values of nonlocal games

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this work we study the sets of two-party correlations generated from a Bell scenario involving two spatially separated systems with respect to various physical models. We show that the sets of classical, quantum, no-signaling and unrestricted correlations can be expressed as projections of affine sections of appropriate convex cones. As a by-product, we identify a spectrahedral outer approximation to the set of quantum correlations which is contained in the first level of the Navascués, Pironio and Acín (NPA) hierarchy and also a sufficient condition for the set of quantum correlations to be closed. Furthermore, by our conic formulations, the value of a nonlocal game over the sets of classical, quantum, no-signaling and unrestricted correlations can be cast as a linear conic program. This allows us to show that a semidefinite programming upper bound to the classical value of a nonlocal game introduced by Feige and Lovász is in fact an upper bound to the quantum value of the game and moreover, it is at least as strong as optimizing over the first level of the NPA hierarchy. Lastly, we show that deciding the existence of a perfect quantum (resp. classical) strategy is equivalent to deciding the feasibility of a linear conic program over the cone of completely positive semidefinite matrices (resp. completely positive matrices). By specializing the results to synchronous nonlocal games, we recover the conic formulations for various quantum and classical graph parameters that were recently derived in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm–Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  Google Scholar 

  2. Barvinok, A.: A Course in Convexity. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  3. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MOS-SIAM Series on Optimization (2001)

  5. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  6. Berta, M., Fawzi, O., Scholz, V.B.: Quantum bilinear optimization. arXiv:1506.08810 (2015)

  7. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)

    Article  Google Scholar 

  8. Burgdorf, S., Laurent, M., Piovesan, T.: On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings. arXiv:1502.02842 (2015)

  9. Cameron, P.J., Montanaro, A., Newman, M.W., Severini, S., Winter, A.: On the quantum chromatic number of a graph. Electr. J. Comb. 14(1). arXiv:quant-ph/0608016 (2007)

  10. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  Google Scholar 

  11. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity, pp. 236–249 (2004)

  12. Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect parallel repetition theorem for quantum XOR proof systems. Comput. Complex. 17(2), 282–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colbeck, R.: Quantum and relativistic protocols for secure multi-party computation. Ph.D. thesis, Trinity College, University of Cambridge (2006)

  14. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the 46th ACM Symposium on Theory of Computing (2014)

  16. Dinur, I., Steurer, D., Vidick, T.: A parallel repetition theorem for entangled projection games. In: Proceedings of the 29th IEEE Conference on Computational Complexity, pp. 197–208 (2014)

  17. Dykema, K.J., Paulsen, V.: Synchronous correlation matrices and Connes’ embedding conjecture. J. Math. Phys. 57, 015214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feige, U., Lovász, L.: Two-prover one-round proof systems: their power and their problems. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 733–744. ACM (1992)

  20. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    Article  Google Scholar 

  21. Fritz, T.: Polyhedral duality in Bell scenarios with two binary observables. J. Math. Phys. 53, 072202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fritz, T.: Tsirelson’s problem and Kirchberg’s conjecture. Rev. Math. Phys. 24(5), 1250012 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, Z.: Binary constraint system games and locally commutative reductions. arXiv:1310.3794 (2013)

  24. Kempe, J., Regev, O., Toner, B.: Unique games with entangled provers are easy. SIAM J. Comput. 39(7), 3207–3229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasserre, J.B.: New approximations for the cone of copositive matrices and its dual. Math. Program. 144(1–2), 265–276 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Laurent, M., Piovesan, T.: Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone. SIAM J. Optim. 25(4), 2461–2493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mančinska, L., Roberson, D.E.: Note on the correspondence between quantum correlations and the completely positive semidefinite cone. Unpublished manuscript, available at https://sites.google.com/site/davideroberson/ (2014)

  28. Mančinska, L., Roberson, D.E.: Quantum homomorphisms. J. Comb. Theory Ser. B 118, 228–267 (2016)

  29. Mančinska, L., Roberson, D.E., Varvitsiotis, A.: On deciding the existence of perfect entangled strategies for nonlocal games. Chicago J. Theor. Comput. Sci. arXiv:1506.07429 (2016)

  30. Maxfield, J.E., Minc, H.: On the matrix equation \(X^{\prime }X = A\). Proc. Edinb. Math. Soc. (Ser. 2) 13(02), 125–129 (1962)

    Article  MATH  Google Scholar 

  31. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)

  34. Paulsen, V.I., Severini, S., Stahlke, D., Todorov, I.G., Winter, A.: Estimating quantum chromatic numbers. J. Funct. Anal. 270(6), 2188–2222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roberson, D.E.: Conic formulations of graph homomorphisms. J. Algebraic Comb. 43(4), 877–913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sikora, J., Varvitsiotis, A., Wei, Z.: On the minimum dimension of a Hilbert space needed to generate a quantum correlation. arXiv:1507.00213 (2015)

  37. Tsirelson, B.S.: Quantum analogues of the Bell inequalities: the case of two spatially separated domains. J. Sov. Math. 36, 557–570 (1987)

    Article  Google Scholar 

  38. Upadhyay, S.: Quantum Information and Variants of Interactive Proof Systems. Ph.D. thesis, University of Waterloo (2011)

  39. Watrous, J.: Theory of quantum information, lecture notes. https://cs.uwaterloo.ca/~watrous/LectureNotes.html (2011)

Download references

Acknowledgments

The authors would like to thank the referees for carefully reading the paper and for their useful comments. Furthermore, the authors thank S. Burgdorf, M. Laurent, L. Mančinska, T. Piovesan, D. E. Roberson, S. Upadhyay, T. Vidick and Z. Wei for useful discussions. A.V. is supported in part by the Singapore National Research Foundation under NRF RF Award No. NRF-NRFF2013-13. J.S. is supported in part by NSERC Canada. Research at the Centre for Quantum Technologies at the National University of Singapore is partially funded by the Singapore Ministry of Education and the National Research Foundation, also through the Tier 3 Grant “Random numbers from quantum processes,” (MOE2012-T3-1-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Varvitsiotis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikora, J., Varvitsiotis, A. Linear conic formulations for two-party correlations and values of nonlocal games. Math. Program. 162, 431–463 (2017). https://doi.org/10.1007/s10107-016-1049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1049-8

Keywords

Mathematics Subject Classification

Navigation