Skip to main content

Advertisement

Log in

Individual confidence intervals for solutions to expected value formulations of stochastic variational inequalities

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Stochastic variational inequalities (SVIs) provide a means for modeling various optimization and equilibrium problems where data are subject to uncertainty. Often the SVI cannot be solved directly and requires a numerical approximation. This paper considers the use of a sample average approximation and proposes three methods for computing confidence intervals for components of the true solution. The first two methods use an “indirect approach” that requires initially computing asymptotically exact confidence intervals for the solution to the normal map formulation of the SVI. The third method directly constructs confidence intervals for the true SVI solution; intervals produced with this method meet a minimum specified level of confidence in the same situations for which the first two methods are applicable. We justify the three methods theoretically with weak convergence results, discuss how to implement these methods, and test their performance using three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agdeppa, R.P., Yamashita, N., Fukushima, M.: Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem. Pac. J. Optim. 6(1), 3–19 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Anitescu, M., Petra, C.: Higher-order confidence intervals for stochastic programming using bootstrapping. Tech. Rep. ANL/MCS-P1964-1011, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (2011)

  3. Attouch, H., Cominetti, R., Teboulle, M. (eds.): Special Issue on Nonlinear Convex Optimization and Variational Inequalities. Springer (2009). Mathematical Programming 116, Numbers 1–2

  4. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Pong, T.K., Wets, R.J.B.: Two-stage stochastic variational inequalities: an ERM-solution procedure. Preprint (2015)

  6. Chen, X., Wets, R.J.B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22(2), 649–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Lan, G., Yuyuan, O.: Accelerated schemes for a class of variational inequalities. Submitted (2014)

  9. Demir, M.C.: Asymptotics and confidence regions for stochastic variational inequalities. Ph.D. thesis, University of Wisconsin, Madison (2000)

  10. Dirkse, S.P., Ferris, M.C.: Mcplib: A collection of nonlinear mixed complementarity problems. Opt. Methods Softw. 5(4), 319–345 (1995)

    Article  Google Scholar 

  11. Dupacova, J., Wets, R.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. 16(4), 1517–1549 (1988)

  12. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  13. Fang, H., Chen, X., Fukushima, M.: Stochastic R\(_0\) matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferris, M.C., Pang, J.S.: Complementarity and Variational Problems: State of the Art. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  15. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Springer, New York (1999)

    MATH  Google Scholar 

  17. Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics. Springer, Heidelberg (2009)

  18. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: Multivariate Normal and t Distributions (2013). http://CRAN.R-project.org/package=mvtnorm.R package version 0.9-9996

  19. Giannessi, F., Maugeri, A. (eds.): Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    MATH  Google Scholar 

  20. Giannessi, F., Maugeri, A., Pardalos, P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Nonconvex Optimization and Its Applications, vol. 58. Springer, New York

  21. Gürkan, G., Pang, J.S.: Approximations of Nash equilibria. Math. Program. 117, 223–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gürkan, G., Yonca Özge, A., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, T., Koopmans, T.C.: On the definition and computation of a capital stock invariant under optimization. J. Econ. Theory 5(3), 487–523 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms, and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huber, P.: The behavior of maximum likelihood estimates under nonstandard conditions. In: LeCam, L., Neyman, J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics, pp. 221–233. University of California Press, Berkeley, (1967)

  26. Jiang, H., Huifu, X.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53(6), 1462–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Juditsky, A., Nemirovski, A., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox algorithm. Stoch. Syst. 1(1), 17–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Koshal, J., Nedic̀, A., Shanbhag, U.V.: Regularized iterative stochastic approximation methods for stochastic variational inequality problems. IEEE Trans. Autom. Control 58(3), 594–609 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, S.: A new method to build confidence regions for solutions of stochastic variational inequalities. Optimization (2012). Published online before print at http://www.tandfonline.com. doi:10.1080/02331934.2012.727556

  31. Lu, S.: Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities. SIAM J. Opt. 24(3), 1458–1484 (2014)

  32. Lu, S., Budhiraja, A.: Confidence regions for stochastic variational inequalities. Math. Oper. Res. 38, 545–568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, S., Liu, Y., Yin, L., Zhang, K.: Confidence intervals and retions for the lasso using stochastic variational inequality techniques in optimization. J. Roy. Stat. Soc. Ser. B (2016). doi:10.1111/rssb.12184

  34. Lu, S., Robinson, S.M.: Normal fans of polyhedral convex sets: structures and connections. Set-valued Anal. 16, 281–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo, M., Lin, G.: Expected residual minimization method for stochastic variational inequality problems. J. Opt. Theory Appl. 140, 103–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pang, J.: Newton’s method for b-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pang, J.S., Ralph, D. (eds.): Special Issue on Nonlinear Programming, Variational Inequalities, and Stochastic Programming. Springer (2009). Mathematical Programming 117, Numbers 1–2

  39. Polyak, B.T.: New stochastic approximation type procedures. Avtomatica i Telemekhanika 7, 98–107 (1990)

    Google Scholar 

  40. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Opt. 30(4), 838–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ralph, D.: On branching numbers of normal manifolds. Nonlinear Anal. Theory Methods Appl. 22(8), 1041–1050 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ravat, U., Shanbhag, U.V.: On the existence of soulutions to quasi-variational inequality and complementarity problems. Preprint (2015)

  43. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  44. Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16(2), 292–309 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17(3), 691–714 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Robinson, S.M.: Sensitivity analysis of variational inequalities by normal-map techniques. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Network Equilibrium Problems, pp. 257–269. Plenum Press, New York (1995)

    Chapter  Google Scholar 

  47. Rockafellar, R.T., Wets, R.: Variational Analysis, A Series of Comprehensive Studies in Mathematics, vol. 317. Springer-Verlag, Berlin (2009)

    Google Scholar 

  48. Rockafellar, R.T., Wets, R.J.B.: Stochastic variational inequalities: Single-stage to multistage. Math. Program. (2016). doi:10.1007/s10107-016-0995-5

  49. Scholtes, S.: A proof of the branching number bound for normal manifolds. Linear Algebra Appl. 246, 83–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  51. Shapiro, A., Dentcheva, D., Ruszczyński, A.P.: Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia, PA (2009)

  52. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Optimization 57, 395–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stefanski, L.A., Boos, D.D.: The calculus of M-estimation. Am. Stat. 56(1), 29–38 (2002)

    Article  MathSciNet  Google Scholar 

  54. Vogel, S.: Universal confidence sets for solutions of optimization problems. SIAM J. Optim. 19(3), 1467–1488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wald, A.: Note on the consitency of the maximum likelihood estimate. Ann. Math. Stat. 20, 595–601 (1949)

    Article  MATH  Google Scholar 

  56. Xu, H.: Sample average approximation methods for a class of stochastic variational inequality problems. Asia-Pac. J. Oper. Res. 27(1), 103–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yin, L., Lu, S., Liu, Y.: Confidence intervals for sparse penalized regression with random designs. Submitted for publication (2015)

  58. Zhang, C., Chen, X., Sumlee, A.: Robust Wardrop’s user equilibrium assignment under stochastic demand and supply. Transp. Res. B 45(3), 534–552 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Research of Michael Lamm and Shu Lu is supported by National Science Foundation under the Grants DMS-1109099 and DMS-1407241. Research of Amarjit Budhiraja is supported in part by the National Science Foundation (DMS-1004418, DMS-1016441, DMS-1305120) and the Army Research Office (W911NF-10-1-0158). We thank the two anonymous referees for comments and suggestions that have helped to greatly improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lamm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamm, M., Lu, S. & Budhiraja, A. Individual confidence intervals for solutions to expected value formulations of stochastic variational inequalities. Math. Program. 165, 151–196 (2017). https://doi.org/10.1007/s10107-016-1046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1046-y

Keywords

Mathematics Subject Classification

Navigation