Skip to main content
Log in

A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian–completely positive programming (CPP) relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012 takes one of the simplest forms, an unconstrained conic linear optimization problem with a single Lagrangian parameter in a CPP matrix variable with its upper-left element fixed to 1. Replacing the CPP matrix variable by a DNN matrix variable, we derive the Lagrangian–DNN relaxation, and establish the equivalence between the optimal value of the DNN relaxation of the original QOP and that of the Lagrangian–DNN relaxation. We then propose an efficient numerical method for the Lagrangian–DNN relaxation using a bisection method combined with the proximal alternating direction multiplier and the accelerated proximal gradient methods. Numerical results on binary QOPs, quadratic multiple knapsack problems, maximum stable set problems, and quadratic assignment problems illustrate the superior performance of the proposed method for attaining tight lower bounds in shorter computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arima, N., Kim, S., Kojima, M.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23, 2320–2340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arima, N., Kim, S., Kojima, M.: Simplified copositive and Lagrangian relaxations for linearly constrained quadratic optimization problems in continuous and binary variables. Pac. J. Optim. 10, 437–451 (2013)

    MathSciNet  Google Scholar 

  3. Arima, N., Kim, S., Kojima, M.: Extension of completely positive cone relaxation to polynomial optimization, Research report B-471, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Feb 2013

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. BIQMAC Library. http://www.biqmac.uni-klu.ac.at/biqmaclib.html

  7. Borcher, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  8. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20, 30–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S.: On the copositive representation of binary and continuous non-convex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burer, S.: Optimizating a polyhedral-semidefinite relaxation of completely positive programs. Math. Program. Comput. 2, 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C., He, B., Ye, Y., Yuan X.: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent. Math. Program. (2015, to appear)

  12. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dickinson, P.J.C., Eichfelder, G., Povh, J.: Erratum to: “On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets” [Optim. Letters, 2012]. Optimization Online (2012). http://www.optimization-online.org/DB_HTML/2012/09/3598.html

  14. DIMACS, Second DIMACS Challenge, Test instances available at: http://dimacs.rutgers.edu/Challenges/

  15. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 28–33 (2008)

    MathSciNet  Google Scholar 

  16. Eichfelder, G., Povh, J.: On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets. Optim. Lett. (2012). doi:10.1007/s11590-012-0450-3

    MATH  Google Scholar 

  17. Fazel, M., Pong, Ti. K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. A 34, 946–977 (2013)

  18. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (semidefinite programming algorithm) user’s manual—version 7.05. Research report B-448, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo (2008)

  19. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  20. Ge, D., Ye. Y.: On doubly positive semidefinite programming relaxations. Optimization Online (2010). http://www.optimization-online.org/DB_HTML/2010/08/2709.html

  21. Jansson, C., Keil, C.: Rigorous error bounds for the optimal value in semidefinite programming. SIAM J. Numer. Anal. 46, 188–200 (2007)

    MathSciNet  Google Scholar 

  22. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéares. Revue Francaise d’Automatique, Informatique et Recherche Opérationelle 9(R-2), 41–76 (1975)

  23. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. C. R. Acad. Sci. 255, 238–240 (1962)

    MathSciNet  MATH  Google Scholar 

  24. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and non-linear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nesterov, Y.E., Nemirovskii, A.: Interior Point Methods for Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  26. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6, 231–224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Quadratic assignment problems. http://www.seas.upenn.edu/qaplib

  28. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121, 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sarac, T., Sipahioglu, A.: A genetic algorithm for the quadratic multiple knapsack problem. In: Advances in Brain, Vision, and Artificial Intelligence, vol. 4729 of Lecture Notes in Computer Science, pp. 490–498. Springer, Heidelberg (2007)

  30. Sloane, N.: Challenge problems: independent sets in graphs. http://neilsloane.com/doc/graphs.html

  31. Strum, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11 & 12, 625–653 (1999)

    Article  Google Scholar 

  32. Toh, K., Todd, M.J., Tütüntü, R.H.: SDPT3—a MATLAB software package for semidefinite programming. Optim. Methods Softw. 11 & 12, 545–581 (1999)

    Article  Google Scholar 

  33. Tucker, A.W.: Dual systems of homogeneous linear relations. In: Kuhn, Tucker (eds.) Linear Inequalities and Related Systems, Annals of Mathematics Studies, No. 38. Princeton University Press, Princeton (1956)

  34. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, D.F., Toh, K.C., Yang, L.Q.: A convergent proximal alternating direction method of multipliers for conic programming with 4-block constraints (2014). arXiv:1404.5378

  36. Yoshise, A., Matsukawa, Y.: On optimization over the doubly nonnegative cone. In: Proceedings of 2010 IEEE Multi-conference on Systems and Control, pp. 13–19 (2010)

  37. Zhao, X.Y., Sun, D.F., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim.

Additional information

Sunyoung Kim’s research was supported by NRF 2012-R1A1A2-038982 and NRF 2014-R1A2A1A11049618. Masakazu Kojima’s research was supported by the Japan Science and Technology Agency (JST), the Core Research of Evolutionary Science and Technology (CREST) research project. Kim-Chuan Toh’s research was supported in part by Ministry of Education Academic Research Fund R-146-000-168-112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kojima, M. & Toh, KC. A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156, 161–187 (2016). https://doi.org/10.1007/s10107-015-0874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0874-5

Keywords

Mathematics Subject Classification

Navigation