Skip to main content
Log in

Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem’s subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call “zero-convexity”. This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alber, Y.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–35 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Amenta, A.B., Bern, M.W., Eppstein, D.: Optimal point placement for mesh smoothing. J. Algorithms 30, 302–322 (1999)

    Article  MathSciNet  Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 3, 345–405 (1991)

    Article  Google Scholar 

  5. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized concavity, classics in applied mathematics, vol. 63, SIAM, Philadelphia, PA, USA, 2010, an unabridged republication of the work first published by Plenum Press (1988)

  6. Barron, E.N., Liu, W.: Calculus of variations in \(L^\infty \). Appl. Math. Optim. 35, 237–263 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Barron, E.N., Goebel, R., Jensen, R.R.: Quasiconvex functions and nonlinear PDEs. Trans. Am. Math. Soc. 365, 4229–4255 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 204, 1–38 (1997)

    Article  MathSciNet  Google Scholar 

  10. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. Algorithms 41, 239–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  13. Bazarra, M.S., Sherali, H., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley-Interscience, Hoboken (2006)

    Book  Google Scholar 

  14. Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. Ser. B 28, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ben-Tal, A., El-Ghaoui, L., Nemirovskii, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  16. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

  17. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  18. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  19. Borwein, J.M., Zhu, Q.J.: A survey of subdifferential calculus with applications. Nonlinear Anal.: Theory Methods Appl. 38, 687–773 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)

    Book  Google Scholar 

  21. Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Zeitschrift 100, 201–225 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Butnariu, D., Reich, S., Zaslavski, A.J.: Convergence to fixed points of inexact orbits for Bregman-monotone operators and for nonexpansive operators in Banach spaces. In: Fetter Natansky, H., et al. (eds.) Fixed Point Theory and its Applications. Yokohama Publishers, pp. 11–33 (2006)

  23. Butnariu, D., Censor, Y., Reich, S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Point Computation and Infinite Dimensional Optimization. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  25. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 1, 540–547 (2007)

    Article  Google Scholar 

  26. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of inexact orbits for a class of operators in complete metric spaces. J. Appl. Anal. 13, 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Butnariu, D., Censor, Y., Gurfil, P., Hadar, E.: On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces. SIAM J. Optim. 19, 786–807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 616. Springer, Berlin (2009)

    Google Scholar 

  29. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Berlin (2012)

    MATH  Google Scholar 

  30. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 160, 730–747 (2014)

  31. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (12pp) (2010)

  32. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Censor, Y., Lent, A.: Cyclic subgradient projections. Math. Program. 24, 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with \(D\)-functions. J. Optim. Theory Appl. 73, 451–464 (1992)

    Article  MathSciNet  Google Scholar 

  35. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  36. Censor, Y., Segal, A.: Algorithms for the quasiconvex feasibility problem. J. Comput. Appl. Math. 185, 34–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Censor, Y., Chen, W., Pajoohesh, H.: Finite convergence of a subgradient projections method with expanding controls. Appl. Math. Optim. 64, 273–285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Characterizing the solution set of polynomial systems in terms of homogeneous forms: an LMI approach. Int. J. Robust Nonlinear Control 13, 1239–1257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  41. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  42. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  43. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  44. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 115–152. Elsevier Science Publishers, Amsterdam (2001)

    Chapter  Google Scholar 

  45. Corvellec, J.-.N., Flåm, S.D.: Non-convex feasibility problems and proximal point methods. Optim. Methods Softw. 19, 3–14 (2004)

  46. Crouzeix, J.-.P., Martinez-Legaz, J.-.E., Volle, M. (eds.): Generalized Convexity, Generalized Monotonicity: Recent Results, Nonconvex Optimization and its Applications, vol. 27, Kluwer, Dordrechtc (1998)

  47. Daniilidis, A., Jules, F., Lassonde, M.: Subdifferential characterization of approximate convexity: the lower semicontinuous case. Math. Program. 116, 115–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Davidi, R.: Algorithms for Superiorization and Their Applications to Image Reconstruction, Ph.D. Thesis, Department of Computer Science, The Graduate Center, The City University of New York (CUNY), New York, NY, USA, 2010. http://www.dig.cs.gc.cuny.edu/rdavidi/Dissertation_RanDavidi.pdf

  49. Davidi, R., Herman, G.T., Censor, Y.: Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res. 16, 505–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. De Pierro, A.R., Iusem, A.N.: A finitely convergent “row-action” method for the convex feasibility problem. Appl. Math. Optim. 17, 225–235 (1988)

  51. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  52. Dixit, A.K.: Optimization in Economic Theory. Oxford University Press, New York (1976)

    MATH  Google Scholar 

  53. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113–123 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Eppstein, D.: Quasiconvex programming. In: Goodman, J.E., Pach, J., Welzl, E., (eds.) Combinatorial and Computational Geometry, MSRI Publications, vol. 52, Cambridge University Press, New York, pp. 287–331 (2005)

  55. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. ACM Trans. Algorithms 2, 492–509 (2006)

    Article  MathSciNet  Google Scholar 

  56. Gerstein, M., Tsai, J., Levitt, M.: The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249, 955–966 (1995)

    Article  Google Scholar 

  57. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker Inc., New York (1984)

    MATH  Google Scholar 

  58. Goede, A., Preissner, R., Frömmel, C.: Voronoi cell: new method for allocation of space among atoms: elimination of avoidable errors in calculation of atomic volume and density. J. Comput. Chem. 18, 1113–1123 (1997)

    Article  Google Scholar 

  59. Gohberg, I., Goldberg, S.: Basic Operator Theory. Birkhäuser, Boston (1981)

    Book  MATH  Google Scholar 

  60. Gold, C.: The Voronoi Web Site, 2008. http://www.voronoi.com/wiki/index.php?title=Main_Page

  61. Greenberg, H.P., Pierskalla, W.P.: Quasi-conjugate functions and surrogate duality. Cahiers du Centre d‘Etudes de Recherche Operationnelle 15, 437–448 (1973)

    MathSciNet  MATH  Google Scholar 

  62. Gromicho, J.A.: Quasiconvex Optimization and Location Theory, Applied Optimization, vol. 9. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  63. Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.): Handbook of Generalized Convexity and Generalized Monotonicity, Nonconvex Optimization and its Applications, vol. 76, Springer, New York (2005)

  64. Hanson, M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  65. Henrion, D., Lasserre, J.B.: Detecting global optimality and extracting solutions in GloptiPoly, In: Henrion, D., Garulli, A., (eds.) Positive Polynomials in Control, Lecture Notes on Control and Information Sciences, vol. 312, Springer, Berlin, pp. 293–310 (2005)

  66. Henrion, D., Lasserre, J.B.: Solving nonconvex optimization problems. IEEE Control Syst. Mag. 24, 72–83 (2004)

    Article  Google Scholar 

  67. Henrion, D., Lasserre, J.B.: Inner approximations for polynomial matrix inequalities and robust stability regions. IEEE Trans. Autom. Control 57, 1456–1467 (2012)

    Article  MathSciNet  Google Scholar 

  68. Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. Inverse Probl. 24, 045011 (2008)

    Article  MathSciNet  Google Scholar 

  69. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: an optimization heuristic for medical physics. Med. Phys. 39, 5532–5546 (2012)

    Article  Google Scholar 

  70. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, Society of Industrial and Applied Mathematics (SIAM), PA, USA, Philadelphia (1996)

  71. Hildebrand, R., Köppe, M.: A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n\log n)}\). Discret. Optim. 10, 69–84 (2013)

    Article  Google Scholar 

  72. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, Nonconvex Optimization and its Applications, vol. 2, Kluwer, Dordrecht (1995)

  73. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  74. Iusem, A.N., Moledo, L.: A finitely convergent method of simultaneous subgradient projections for the convex feasibility problem. Comput. Appl. Math. 5, 169–184 (1986)

    MathSciNet  MATH  Google Scholar 

  75. Iusem, A.N., Otero, R.G.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22, 609–640 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  76. Ivanov, M.: Sequential representation formulae for \(G\)-subdifferential and Clarke subdifferential in smooth Banach spaces. J. Convex Anal. 11, 179–196 (2004)

    MathSciNet  MATH  Google Scholar 

  77. Kim, C.-.M., Won, C.-.I., Cho, Y., Kim, D., Lee, S., Bhak, J., Kim, D.-.S.: Interaction interfaces in proteins via the Voronoi diagram of atoms. Comput.-Aided Des. 38, 1192–1204 (2006)

  78. Kiwiel, K.C.: Generalized Bregman projections in convex feasibility problems. J. Optim. Theory Appl. 96, 139–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  79. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14, 807–840 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kopecká, E., Reem, D., Reich, S.: Zone diagrams in compact subsets of uniformly convex spaces. Israel J. Math. 188, 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  82. Martínez-Legaz, J.-.E.: Quasiconvex duality theory by generalized conjugation methods. Optimization 19, 603–652 (1988)

  83. Martínez-Legaz, J.E., Sach, P.H.: A new subdifferential in quasiconvex analysis. J. Convex Anal. 6, 1–11 (1999)

    MathSciNet  MATH  Google Scholar 

  84. Monteiro, R.D.C., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods. SIAM J. Optim. 23, 1092–1125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  86. Nedić, A., Bertsekas, D.P.: The effect of deterministic noise in subgradient methods. Math. Program. Ser. A 125, 75–99 (2010)

    Article  Google Scholar 

  87. Ngai, H.V., Luc, D.T., Thera, M.: Approximate convex functions. J. Nonlinear Convex Anal. 1, 155–176 (2000)

    MathSciNet  MATH  Google Scholar 

  88. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

  89. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  90. Ostrowski, A.M.: The round-off stability of iterations. Zeitschrift für Angewandte Math. und Mech. 47, 77–81 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  91. Otero, R.G., Iusem, A.: Fixed-point methods for a certain class of operators. J. Optim. Theory Appl. 159, 656–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  92. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization: Convex Analysis Without Linearity. Kluwer, Norwell (1997)

    Book  MATH  Google Scholar 

  93. Penfold, S.N., Schulte, R.W., Censor, Y., Rosenfeld, A.B.: Total variation superiorization schemes in proton computed tomography image reconstruction. Med. Phys. 37, 5887–5895 (2010)

    Article  Google Scholar 

  94. Penot, J.-.P.: Are generalized derivatives useful for generalized convex functions? In: Martinez-Legaz, J.E., Crouzeix, J.-.P., Volle, M. (eds.) Generalized convexity, Generalized Monotonicity: Recent Results. Kluwer, Dordrecht, pp. 3–59 (1998)

  95. Pintér, J.: Global Optimization in Action: Continuous and Lipschitz Optimization-Algorithms, Implementations, and Applications. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  96. Plastria, F.: Lower subdifferentiable functions and their minimization by cutting planes. J. Optim. Theory Appl. 46, 37–53 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  97. Pustylnik, E., Reich, S., Zaslavski, A.J.: Inexact orbits of nonexpansive mappings. Taiwan. J. Math. 12, 1511–1523 (2008)

    MathSciNet  MATH  Google Scholar 

  98. Pustylnik, E., Reich, S., Zaslavski, A.J.: Inexact infinite products of nonexpansive mappings. Numer. Funct. Anal. Optim. 30, 632–645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  99. Razumichin, B.S.: Classical Principles and Optimization Problems. D. Reidel Publishing Company, Dordrecht (1987)

    Book  Google Scholar 

  100. Reem, D.: An algorithm for computing Voronoi diagrams of general generators in general normed spaces. In: Proceedings of the Sixth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2009), Copenhagen, Denmark, pp. 144–152

  101. Reem, D.: The geometric stability of Voronoi diagrams with respect to small changes of the sites, (2011), Complete version in arXiv 1103.4125 (last updated: April 6: Extended abstract. In: Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG 2011), pp. 254–263. France, Paris (2011)

  102. Reem, D.: The Bregman distance without the Bregman function II. Contemp. Math. 568, 213–223 (2012)

    Article  MathSciNet  Google Scholar 

  103. Rockafellar, R.T.: Convex Anal. Princeton University Press, Princeton (1970)

    Google Scholar 

  104. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  105. Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. 39, 331–355 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  106. Ryu, J., Kim, D., Cho, Y., Park, R., Kim, D.-.S.: Computation of molecular surface using Euclidean Voronoi diagram. Comput.-Aided Des. Appl. 2, 439–448 (2005)

  107. Soleimani-damaneh, M.: Nonsmooth optimization using Mordukhovich’s subdifferential. SIAM J. Control Optim. 48, 3403–3432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  108. Solodov, M.V., Zavriev, S.K.: Error stability properties of generalized gradient-type algorithms. J. Optim. Theory Appl. 98, 663–680 (1998)

  109. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results in the theory of Bregman functions. Math. Oper. Res. 51, 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  110. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  111. Svaiter, B.F.: Personal Communication (2011)

  112. Svaiter, B.F.: Personal Communication (2012)

  113. Tuncel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization, A co-publication of the American Mathematical Society (AMS) and the Fields Institute for Research in Mathematical Sciences. Providence, RI, USA (2010)

  114. Van Tiel, J.: Convex Analysis: An Introductory Text. Wiley, Chichester (1984)

  115. Zaslavski, A.J.: Subgradient projection algorithms for convex feasibility problems in the presence of computational errors. J. Approx. Theory 175, 19–42 (2013)

    Article  MathSciNet  Google Scholar 

  116. Zaslavski, A.J.: Subgradient projection algorithms and approximate solutions of convex feasibility problems. J. Optim. Theory Appl. 157, 803–819 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Luba Tetruashvili for many helpful comments. We thank Benar Svaiter for helpful discussions and suggestions, in particular, for his ideas regarding the alternative proof of Proposition 1c mentioned in Remark 4. Thanks are also due to Jefferson Melo, Alfredo Iusem, Simeon Reich, Alex Segal, and Mikhail Solodov for helpful remarks, in particular regarding some of the references, and to Claudia Sagastizábal for a helpful discussion on some general aspects of the paper. Finally, we greatly appreciate the constructive and insightful comments of three anonymous reviewers and the Associate Editor which helped us improve the paper. This research was supported by the United States-Israel Binational Science Foundation (BSF) Grant Number 200912, by the US Department of Army award number W81XWH-10-1-0170, and by a special postdoc fellowship from IMPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Reem.

Additional information

This work was done while the Daniel Reem was at the Department of Mathematics, University of Haifa, Haifa, Israel (2010–2011), and at IMPA—Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil (2011–2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Censor, Y., Reem, D. Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods. Math. Program. 152, 339–380 (2015). https://doi.org/10.1007/s10107-014-0788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0788-7

Keywords

Mathematics Subject Classification (2010)

Navigation