Skip to main content
Log in

Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our first order algorithm is easy to implement and the objective function value is reduced monotonically along the iteration points. We show that the worst-case iteration complexity for finding an \(\epsilon \) scaled first order stationary point is \(O(\epsilon ^{-2})\). Furthermore, we develop a second order interior point algorithm using the Hessian matrix, and solve a quadratic program with a ball constraint at each iteration. Although the second order interior point algorithm costs more computational time than that of the first order algorithm in each iteration, its worst-case iteration complexity for finding an \(\epsilon \) scaled second order stationary point is reduced to \(O(\epsilon ^{-3/2})\). Note that an \(\epsilon \) scaled second order stationary point must also be an \(\epsilon \) scaled first order stationary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bian, W., Chen, X.: Worst-case complexity of smoothing quadratic regularization methods for non-Lipschitzian optimization. SIAM J. Optim. 28, 1718–1741 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cartis, C., Gould, N.I.M., Toint, PhL: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming. SIAM J. Optim. 21, 1721–1739 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization, Part I: motivation, convergence and numerical results. Math. Program. 127, 245–295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization, Part II: worst-case function- and derivative-evaluation complexity. Math. Program. 130, 295–319 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cartis, C., Gould, N.I.M., Toint, PhL: An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity. IMA J. Numer. Anal. 32, 1661–1695 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cartis, C., Gould, N.I.M., Toint, PhL: Complexity bounds for second-order optimality in unconstrained optimization. J. Complex. 28, 93–108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X.: Smoothing methods for nonsmooth, novonvex minimization. Math. Program. 134, 71–99 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained \(L_2\)-\(L_p\) minimization. Math. Program. 143, 371–383 (2014)

  10. Chen, X., Ng, M., Zhang, C.: Nonconvex \(l_p\) regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21, 4709–4721 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and smoothing trust region Newton method for non-Lipschitz optimization. SIAM J. Optim. 23, 1528–1552 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of \(l_2\)-\(l_{p}\) minimization. SIAM J. Sci. Comput. 32, 2832–2852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, X., Zhou, W.: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 3, 765–790 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fan, J.: Comments on ’Wavelets in stastics: a review’ by A. Antoniadis. J. Ital. Stat. Soc. 6, 131–138 (1997)

    Article  Google Scholar 

  15. Garmanjani, R., Vicente, L.N.: Smoothing and worst case complexity for direct-search methods in nonsmooth optimization. IMA J. Numer. Anal. 33, 1008–1028 (2013)

    Google Scholar 

  16. Ge, D., Jiang, X., Ye, Y.: A note on the complexity of \(L_p\) minimization. Math. Program. 21, 1721–1739 (2011)

    MathSciNet  Google Scholar 

  17. Gratton, S., Sartenaer, A., Toint, PhL: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19, 414–444 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Griewank, A.: The Modification of Newton’s Method for Unconstrained Optimization by Bounding Cubic Terms. Technical report NA/12 (1981). University of Cambridge, UK Department of Applied Mathematics and Theoretical Physics (1981)

  19. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer, New York (2009)

    MATH  Google Scholar 

  20. Huang, J., Horowitz, J.L., Ma, S.: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Stat. 36, 587–613 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nesterov, Y.: Introductory Lectures on Convex Optimization, Applied Optimization. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  22. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108, 177–205 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. 112, 159–181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.-K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1, 2–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tibshirani, R.: Shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  26. Vavasis, S.A., Zippel, R.: Proving Polynomial Time for Sphere-Constrained Quadratic Programming, Technical Report 90-1182, Department of Computer Science. Cornell University, Ithaca, NY (1990)

  27. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford Sciences, New York (1991)

    MATH  Google Scholar 

  28. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  29. Ye, Y.: On the complexity of approximating a KKT point of quadratic programming. Math. Program. 80, 195–211 (1998)

    Article  MATH  Google Scholar 

  30. Ye, Y.: A new complexity result on minimization of a quadratic function with a sphere constraint. In: Floudas, C., Pardalos, P.M. (eds.) Recent Advances in Global Optimization. Princeton University Press, Princeton (1992)

    Google Scholar 

  31. Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Sven Leyffer, the anonymous Associate Editor and referees for their insightful and constructive comments, which help us to enrich the content and improve the presentation of the results in this paper. The authors acknowledge the support of the Department of Applied Mathematics, the Hong Kong Polytechnic University for the visit of Yinyu Ye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Additional information

This work was supported partly by Hong Kong Research Council Grant PolyU5003/10p, The Hong Kong Polytechnic University Postdoctoral Fellowship Scheme, the NSF foundation (11101107, 11271099) of China and US AFOSR Grant FA9550-12-1-0396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, W., Chen, X. & Ye, Y. Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization. Math. Program. 149, 301–327 (2015). https://doi.org/10.1007/s10107-014-0753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0753-5

Keywords

Mathematics Subject Classifcation (2010)

Navigation