Skip to main content
Log in

Thresholded covering algorithms for robust and max–min optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In a two-stage robust covering problem, one of several possible scenarios will appear tomorrow and require to be covered, but costs are higher tomorrow than today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? We consider the \(k\) -robust model where the possible scenarios tomorrow are given by all demand-subsets of size \(k\). In this paper, we give the following simple and intuitive template for \(k\)-robust covering problems: having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat. We show that this template gives good approximation algorithms for \(k\)-robust versions of many standard covering problems: set cover, Steiner tree, Steiner forest, minimum-cut and multicut. Our \(k\)-robust approximation ratios nearly match the best bounds known for their deterministic counterparts. The main technical contribution lies in proving certain net-type properties for these covering problems, which are based on dual-rounding and primal–dual ideas; these properties might be of some independent interest. As a by-product of our techniques, we also get algorithms for max–min problems of the form: “given a covering problem instance, which \(k\) of the elements are costliest to cover?” For the problems mentioned above, we show that their \(k\)-max–min versions have performance guarantees similar to those for the \(k\)-robust problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 445–456 (1995)

    Article  MathSciNet  Google Scholar 

  3. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Price of correlations in stochastic optimization. Oper. Res. 60(1), 150–162 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach to online network optimization problems. ACM Trans. Algorithms 2(4), 640–660 (2006)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39(2), 361–370 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berman, P., Coulston, C.: On-line algorithms for Steiner tree problems. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 344–353 (1997)

  8. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization problems. Math. Program. 107(1–2), 5–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byrka, J., Grandoni, F., Rothvoß, T., Laura, S.: An improved LP-based approximation for Steiner tree. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 583–592 (2010)

  11. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carr, B., Vempala, S.: Randomized meta-rounding. Random Struct. Algorithms 20(3), 343–352 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow problem. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 156–165 (2004)

  14. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked terminals, and routing problems. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 183–192 (2005)

  15. Dhamdhere, K., Goyal, V., Ravi. R., Singh, M.: How to pay, come what may: approximation algorithms for demand-robust covering problems. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp. 367–378 (2005)

  16. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S.: Robust combinatorial optimization with exponential scenarios. In: Proceedings of the Integer Programming and Combinatorial Optimization Conference (IPCO), pp. 439–453 (2007)

  19. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions II. Math. Program. Study 8, 73–87 (1978)

    Article  MathSciNet  Google Scholar 

  20. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 396–402 (2005)

  22. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Golovin, D., Goyal, V., Ravi, R.: Pay today for a rainy day: improved approximation algorithms for demand-robust min-cut and shortest path problems. In: Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS), pp. 206–217 (2006)

  25. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 621–630 (2006)

  26. Gupta, A., Hajiaghayi, Mohammad T., Nagarajan, V., Ravi, R.: Dial a Ride from k-forest. ACM Trans. Algorithms 6(2), 1–21 (2010)

  27. Gupta, A., Nagarajan, V., Ravi, R.: Robust and max–min optimization under matroid and knapsack uncertainty sets. http://arxiv.org/abs/1012.4962

  28. Gupta, A., Pál, M., Ravi, R., Amitabh, S.: Sampling and cost-sharing: approximation algorithms for stochastic optimization problems. SIAM J. Comput. 40(5), 1361–1401 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Proceedings of the Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 34–43 (2003)

  30. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discret. Math. 4(3), 369–384 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 691–700 (2004)

  32. Khandekar, R., Kortsarz, G., Mirrokni, V.S., Salavatipour, M.R.: Two-stage robust network design with exponential scenarios. Algorithmica 65(2), 391–408 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  34. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions I. Math. Program. 14, 265–294 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  35. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 255–264 (2008)

  36. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. Syst. Sci. 37(2), 130–143 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ravi, R., Sinha, A.: Approximation algorithms for stochastic optimization problems. Math. Program. 108(1), 97–114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  39. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its application to stochastic integer programs. J. ACM 53(6), 978–1012 (2006)

    Article  MathSciNet  Google Scholar 

  40. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  Google Scholar 

  41. Sviridenko, M.: A note on maximizing a submodular set function subject to knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Swamy, C.: Risk-averse stochastic optimization: probabilistically-constrained models and algorithms for black-box distributions. In: SODA, pp. 1627–1646 (2011)

Download references

Acknowledgments

We thank Chandra Chekuri, Ravishankar Krishnaswamy, Danny Segev and Maxim Sviridenko for invaluable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanath Nagarajan.

Additional information

An extended abstract containing the results of this paper and of [27] appeared jointly in Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP), 2010.

A. Gupta: Supported in part by NSF awards CCF-0448095 and CCF-0729022, and an Alfred P. Sloan Fellowship.

R. Ravi: Supported in part by NSF Grants CCF-0728841 and CCF-1218382.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Nagarajan, V. & Ravi, R. Thresholded covering algorithms for robust and max–min optimization. Math. Program. 146, 583–615 (2014). https://doi.org/10.1007/s10107-013-0705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0705-5

Mathematics Subject Classification

Navigation