Skip to main content
Log in

A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with finite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to find provably good solutions in certain very special cases. Our approach uses both decomposition, to enable processing subproblems corresponding to one possible outcome at a time, and integer programming techniques, to combine the results of these subproblems to yield strong valid inequalities. Computational results on a chance-constrained formulation of a resource planning problem inspired by a call center staffing application indicate the approach works significantly better than both an existing mixed-integer programming formulation and a simple decomposition approach that does not use strong valid inequalities. We also demonstrate how the approach can be used to efficiently solve for a sequence of risk levels, as would be done when solving for the efficient frontier of risk and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The extension to more general discrete distributions of the form \(\mathbb P \{\omega = \omega ^k \} = p_k\), where \(p_k \ge 0\) and \(\sum _k p_k = 1\), is straightforward and is omitted to simplify exposition.

References

  1. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Automat. Control 51, 742–753 (2006)

    Article  MathSciNet  Google Scholar 

  4. Nemirovski, A., Shapiro, A.: Scenario approximation of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty, pp. 3–48. Springer, London (2005)

    Google Scholar 

  5. Campi, M., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148, 257–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jeroslow, R.: Representability in mixed integer programming, I: characterization results. Discr. Appl. Math. 17, 223–243 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93, 195–215 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tanner, M., Sattenspiel, L., Ntaimo, L.: Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math. Biosci. 215, 144–151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Watanabe, T., Ellis, H.: Stochastic programming models for air quality management. Comput. Oper. Res. 20, 651–663 (1993)

    Article  MATH  Google Scholar 

  10. Morgan, D., Eheart, J., Valocchi, A.: Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour. Res. 29, 551–561 (1993)

    Article  Google Scholar 

  11. Andreas, A.K., Smith, J.C.: Mathematical programming algorithms for two-path routing problems with reliability considerations. INFORMS J. Comput. 20, 553–564 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Song, Y., Luedtke, J.: Branch-and-cut algorithms for chance-constrained formulations of reliable network design problems (2012). Available at http://www.optimization-online.org

  13. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958)

    Article  Google Scholar 

  14. Prékopa, A.: On probabilistic constrained programmming. In: Kuhn, H.W. (ed.) Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  15. Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130, 1–22 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11, 18–39 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  17. Beraldi, P., Ruszczyński, A.: The probabilistic set-covering problem. Oper. Res. 50, 956–967 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132, 31–56 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 12, 247–272 (2010)

    Article  MathSciNet  Google Scholar 

  21. Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem. Math. Program. 121, 1–31 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic constraints. Math. Program. 138, 223–251 (2013). doi:10.1007/s10107-012-0539-6

    Article  MATH  MathSciNet  Google Scholar 

  23. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under gaussian distribution. Math. Oper. Res. 37, 475–488 (2012)

    Article  MathSciNet  Google Scholar 

  24. Hong, L., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Oper. Res. 59, 617–630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prékopa, A.: Programming under probabilistic constraints with a random technology matrix. Mathematische Operationsforschung Statistik 5, 109–116 (1974)

    Article  MATH  Google Scholar 

  26. Van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: On probabilistic constraints induced by rectangular sets and multivariate normal distributions. Math. Methods Oper. Res. 71, 535–549 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tanner, M., Ntaimo, L.: IIS branch-and-cut for joint chance-constrained programs and application to optimal vaccine allocation. Eur. J. Oper. Res. 207, 290–296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Beraldi, P., Bruni, M.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177, 127–137 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. 107, 37–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Erdoğan, E., Iyengar, G.: On two-stage convex chance constrained problems. Math. Meth. Oper. Res. 65, 115–140 (2007)

    Article  MATH  Google Scholar 

  34. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. In: Fischetti, M., Williamson, D. (eds.) IPCO 2007, Lecture Notes in Computer Science, pp. 410–423. Springer, Berlin (2007)

  35. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  36. Van Slyke, R., Wets, R.J.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math 17, 638–663 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  37. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage stochastic linear programs. Math. Oper. Res. 16, 650–669 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Shen, S., Smith, J., Ahmed, S.: Expectation and chance-constrained models and algorithms for insuring critical paths. Manage. Sci. 56, 1794–1814 (2010)

    Article  MATH  Google Scholar 

  39. Sherali, H., Adams, W.: A hierarcy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  40. Luedtke, J.: An integer programming and decomposition approach for general chance-constrained mathematical programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO, Lecture Notes in Computer Science, vol. 6080, pp. 271–284. Springer, Berlin (2010)

  41. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54, 756–766 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: The mixed vertex packing problem. Math. Program. 89, 35–53 (2000)

    MATH  MathSciNet  Google Scholar 

  43. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Linderoth, J., Savelsbergh, M.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP. Technical Report 95–05, DIMACS (1995)

  46. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)

    Article  MathSciNet  Google Scholar 

  47. Gurvich, I., Luedtke, J., Tezcan, T.: Call center staffing with uncertain arrival rates: a chance-constrained optimization approach. Manag. Sci. 56, 1093–1115 (2010)

    Article  MATH  Google Scholar 

  48. Luedtke, J.: Online supplement to: a branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs (2012). Available at http://www.cae.wisc.edu/~luedtkej

  49. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)

    Article  Google Scholar 

  50. Qiu, F., Ahmed, S., Dey, S., Wolsey, L.: Covering linear programming with violations (2012). Available at http://www.optimization-online.org

Download references

Acknowledgments

The author thanks Shabbir Ahmed for the suggestion to compare the presented approach with a basic decomposition algorithm. The author also thanks the anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Luedtke.

Additional information

This research has been supported by NSF under grant CMMI-0952907.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luedtke, J. A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146, 219–244 (2014). https://doi.org/10.1007/s10107-013-0684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0684-6

Keywords

Mathematics Subject Classification (2010)

Navigation