Skip to main content
Log in

A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper describes an implementation of an interior-point algorithm for large-scale nonlinear optimization. It is based on the algorithm proposed by Curtis et al. (SIAM J Sci Comput 32:3447–3475, 2010), a method that possesses global convergence guarantees to first-order stationary points with the novel feature that inexact search direction calculations are allowed in order to save computational expense. The implementation follows the proposed algorithm, but includes many practical enhancements, such as functionality to avoid the computation of a normal step during every iteration. The implementation is included in the IPOPT software package paired with an iterative linear system solver and preconditioner provided in PARDISO. Numerical results on a large nonlinear optimization test set and two PDE-constrained optimization problems with control and state constraints are presented to illustrate that the implementation is robust and efficient for large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnautu V., Neittaanmaki P.: Optimal Control from Theory to Computer Programs. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  2. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11—Revision 3.1, Argonne National Laboratory (2010)

  3. Betts J.T.: Practical Methods for Optimal Control Using Nonlinear Programming Advances in Design and Control. SIAM, Philadelphia (2001)

    Google Scholar 

  4. Biegler L.T., Ghattas O., Heinkenschloss M., Keyes D., Bloemen Waanders B.: Real-Time PDE-Constrained Optimization. Computational Science and Engineering. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  5. Biegler, L.T., Ghattas, O., Heinkenschloss, M., Van Bloemen Waanders, B. (eds.): Large-Scale PDE-Constrained Optimization. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003)

  6. Biros G., Ghattas O.: Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: the Krylov–Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biros G., Ghattas O.: Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part II: the Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J. Sci. Comput. 27(2), 714–739 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrd R.H., Curtis F.E., Nocedal J.: An inexact SQP method for equality constrained optimization. SIAM J. Optim. 19(1), 351–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byrd R.H., Curtis F.E., Nocedal J.: An inexact Newton method for nonconvex equality constrained optimization. Math. Program. 122(2), 273–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtis, F.E., Huber, J., Schenk, O., Wächter, A.: On the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. Technical report, Lehigh ISE 12T-006, Optimization Online ID: 2011-04-2992 (2012)

  11. Curtis F.E., Nocedal J.: Flexible penalty functions for nonlinear constrained optimization. IMA J. Numer. Anal. 28(4), 749–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Curtis F.E., Nocedal J., Wächter A.: A matrix-free algorithm for equality constrained optimization problems with rank deficient Jacobians. SIAM J. Optim. 20(3), 1224–1249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Curtis F.E., Schenk O., Wächter A.: An interior-point algorithm for nonlinear optimization with inexact step computations. SIAM J. Sci. Comput. 32(6), 3447–3475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dembo R.S., Eisenstat S.C., Steihaug T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fourer R., Gay D.M., Kernighan B.W.: AMPL: A Modeling Language for Mathematical Programming. Brooks/Cole, Belmont (2002)

    Google Scholar 

  16. Freund, R.W.: Preconditioning of symmetric, but highly indefinite linear systems. In: Sydow, A. (ed.) 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, pp. 551–556. Wissenschaft & Technik, Berlin (1997)

  17. Gould N.I.M., Bongartz I., Conn A.R., Toint Ph.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

    Article  MATH  Google Scholar 

  18. Haber E., Ascher U.M.: Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Probl. 17, 1847–1864 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heinkenschloss M., Vicente L.N.: Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12(2), 283–302 (2002)

    Article  MathSciNet  Google Scholar 

  20. Hinze M., Pinnau R., Ulbrich M., Ulbrich S.: Optimization with PDE Constraints, Volume 23 of Mathematical Modeling: Theory and Applications. Springer, Dordrecht (2009)

    Google Scholar 

  21. Jäger H., Sachs E.W.: Global convergence of inexact reduced SQP methods. Optim. Methods Softw. 7(2), 83–110 (1997)

    Article  MATH  Google Scholar 

  22. Kirk B.S., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  23. Kirk D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  24. Powell M.J.D: A hybrid method for nonlinear equations. In: Rabinowitz, P. (ed.) Numerical methods for nonlinear algebraic equations, pp. 87–114. Gordon and Breach, London (1970)

    Google Scholar 

  25. Schenk O., Bollhöfer M., Roemer R.A.: On large scale diagonalization techniques for the Anderson model of localization. SIAM J. Sci. Comput. 28(3), 963–983 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Steihaug T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20(3), 626–637 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tröltzsch F.: Optimal control of partial differential equations: theory, methods, and applications, Volume 112. American Mathematical Society, Providence (2010)

    Google Scholar 

  28. Wächter A., Biegler L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wächter.

Additional information

Frank E. Curtis was supported by National Science Foundation grant DMS-1016291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, F.E., Huber, J., Schenk, O. et al. A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. Math. Program. 136, 209–227 (2012). https://doi.org/10.1007/s10107-012-0557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0557-4

Keywords

Mathematics Subject Classification

Navigation