Skip to main content
Log in

Newton iterations in implicit time-stepping scheme for differential linear complementarity systems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a generalized Newton method for solving the system of nonlinear equations with linear complementarity constraints in the implicit or semi-implicit time-stepping scheme for differential linear complementarity systems (DLCS). We choose a specific solution from the solution set of the linear complementarity constraints to define a locally Lipschitz continuous right-hand-side function in the differential equation. Moreover, we present a simple formula to compute an element in the Clarke generalized Jacobian of the solution function. We show that the implicit or semi-implicit time-stepping scheme using the generalized Newton method can be applied to a class of DLCS including the nondegenerate matrix DLCS and hidden Z-matrix DLCS, and has a superlinear convergence rate. To illustrate our approach, we show that choosing the least-element solution from the solution set of the Z-matrix linear complementarity constraints can define a Lipschitz continuous right-hand-side function with a computable Lipschitz constant. The Lipschitz constant helps us to choose the step size of the time-stepping scheme and guarantee the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acary V., Brogliato B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    Google Scholar 

  2. Alefeld G., Wang Z.: Error estimation for nonlinear complementarity problems via linear systems with interval data. Numer. Funct. Anal. Optim. 29, 243–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaji M., Donnell P., Baigent S.: P matrix properties injectivity, and stability in chemical reactions systems. SIAM J. Appl. Math. 67, 1523–1547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broglitao B.: Some perspectives on analysis and control of complementarity systems. IEEE Trans. Autom. Control 48, 918–935 (2003)

    Article  Google Scholar 

  5. Camlibel M.K., Heemels W.P.M.H., Schumacher J.M.: Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 49, 349–357 (2002)

    Article  MathSciNet  Google Scholar 

  6. Camlibel M.K., Pang J.-S., Shen J.L.: Lyapunov stability of linear complementarity systems. SIAM J. Optim. 17, 1056–1101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camlibel M.K., Pang J.-S., Shen J.L.: Conewise linear systems: non-zenoness and observability. SIAM J. Control Optim. 45, 1769–1800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Wang, Z.: Computational error bounds for differential linear variational inequality. IMA J. Numer. Anal. (to appear)

  9. Chen X., Xiang S.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18, 1250–1265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen X., Xiang S.: Implicit solution function of P0 and Z matrix complementarity constraints. Math. Program. Ser. A 128, 1–18 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke F.H.: Optimization and Nonsmooth Analysis. SIAM Publisher, Philadelphia (1990)

    Book  MATH  Google Scholar 

  12. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, Boston, MA (1992)

    MATH  Google Scholar 

  13. Ferris M.C., Pang J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friesz T.L.: Dynamic Optimization and Differential Games, International Series in Operations Research and Management Science, vol. 135. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Gabriel, S.A., Moré, J.J.: Smoothing of mixed complementarity problems. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 105–116. SIAM, Philadelphia (1997)

  16. Gavrea B., Anitescu M., Potra F.A.: Convergence of a class of semi-implicit time-stepping schemes for nonsmooth rigid multibody dynamics. SIAM J. Optim. 19, 969–1001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han L., Pang J.-S.: Non-zenoness of a class of differential quasi-variational inequalities. Math. Program. Ser. A 121, 171–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Han L., Tiwari A., Camlibel M.K., Pang J.-S.: Convergence of time-stepping schemes for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47, 3768–3796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heemels W.P.M.H., Camlibel M.K., van der Schaft A.J., Schumacher J.M.: Modelling, well-posedness, and stability of switched electrical networks. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control, LNCS 2623, pp. 249–266. Springer, Berlin (2003)

    Chapter  Google Scholar 

  20. Heemels W.P.M.H., Brogliato B.: The complementarity class of hybrid dynamical systems. Eur. J. Control 9, 322–360 (2003)

    Article  Google Scholar 

  21. Heemels W.P.M.H., Camlibel M.K., Schumacher J.M.: On the dynamic analysis of piecewise-linear networks. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 49, 315–327 (2002)

    Article  MathSciNet  Google Scholar 

  22. Konnov I.K.: Equilibrium Models and Variational Inequalities. Elsevier, The Netherlands (2007)

    MATH  Google Scholar 

  23. Mangasarian O.L., Shiau T.-H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naiman D.Q., Stone R.E.: A homological characterization of Q-matrices. Math. Oper. Res. 23, 463–478 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikaido H.: Convex Structures and Economic Theory. Academic Press, New York (1968)

    MATH  Google Scholar 

  26. Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  27. Pang J.-S., Shen J.: Strongly regular differential variational systems. IEEE Trans. Autom. Control 52, 242–255 (2007)

    Article  MathSciNet  Google Scholar 

  28. Pang J.-S., Stewart D.E.: Differential variational inequalities. Math. Program. Ser. A 113, 345–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pang J.-S., Stewart D.E.: Solution dependence on initial conditions in differential variational inequalities. Math. Program. Ser. B 116, 429–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi L., Sun J.: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schumacher J.M.: Complementarity systems in optimization. Math. Program. Ser. B 101, 263–295 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schäfer U.: An inclosure method for free boundary problems based on a linear complementarity problem with interval data. Numer. Funct. Anal. Optim. 22, 991–1011 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen J.L., Pang J.-S.: Linear complementarity systems: zeno states. SIAM J. Control Optim. 44, 1040–1066 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen J.L., Pang J.S.: Semicopositive linear complementarity systems. Inter. J. Robust Nonlinear Control 17, 1367–1386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Torregrosa J.R., Jordán C., el-Ghamry R.: The nonsingular matrix completion problem. Int. J. Contemp. Math. Sci. 2, 349–355 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Vasca F., Ianneli L., Camlibel M.K., Frasca R.: A new perspective for modelling power electronics converters: complementarity framework. IEEE Trans. Power Electron. 24, 456–468 (2009)

    Article  Google Scholar 

  37. Wang Z., Yuan Y.: Componentwise error bounds for linear complementarity problems. IMA J. Numer. Anal. 31, 348–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Additional information

Xiaojun Chen’s work is supported partly by Hong Kong Research Grant Council grant PolyU5003/09p. Shuhuang Xiang’s work is supported partly by NSF of China (No.10771218,11071260).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Xiang, S. Newton iterations in implicit time-stepping scheme for differential linear complementarity systems. Math. Program. 138, 579–606 (2013). https://doi.org/10.1007/s10107-012-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0527-x

Keywords

Mathematics Subject Classification

Navigation