Skip to main content
Log in

Theory of semidefinite programming for Sensor Network Localization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior-point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we show, for the first time, that these networks can be localized in polynomial time. We also give a simple and efficient criterion for checking whether a given instance of the localization problem has a unique realization in \(\mathcal{R}^2\) using graph rigidity theory. Finally, we introduce a notion called strong localizability and show that the SDP model will identify all strongly localizable sub-networks in the input network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfakih A.Y. (2000): Graph rigidity via euclidean distance matrices. Linear Algebra Appl. 310, 149–165

    Article  MathSciNet  Google Scholar 

  2. Alfakih A.Y. (2001): On rigidity and realizability of weighted graphs. Linear Algebra Appl. 325, 57–70

    Article  MathSciNet  Google Scholar 

  3. Alfakih A.Y., Khandani A., Wolkowicz H. (1999): Solving euclidean distance matrix completion problems via semidefinite programming. Comput. Opt. Appl. 12, 13–30

    Article  MathSciNet  Google Scholar 

  4. Alfakih, A.Y., Wolkowicz, H.: On the embeddability of weighted graphs in euclidean spaces. Research Report CORR 98-12, University of Waterloo, Department of Combinatorics and Optimization (1998)

  5. Alfakih, A.Y., Wolkowicz, H.: Euclidean distance matrices and the molecular conformation problem. Research Report CORR 2002-17, University of Waterloo, Department of Combinatorics and Optimization (2002)

  6. Alizadeh F. (1995): Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Opt. 5, 13–51

    Article  MathSciNet  Google Scholar 

  7. Aspnes, J., Goldenberg, D., Yang, Y.R.: On the computational complexity of sensor network localization. ALGOSENSORS 2004, in LNCS 3121, 32–44 (2004)

  8. Bădoiu, M.: Approximation algorithm for embedding metrics into a two-dimensional space. Proceedings 14th SODA, pp. 434–443 (2003)

  9. Bădoiu, M., Demaine, E.D., Hajiaghayi, M.T., Indyk, P.: Low-dimensional embedding with extra information. Proceedings 20th SoCG, pp. 320–329 (2004)

  10. Barvinok A. (1995): Problems of distance geometry and convex properties of quadratic maps. Disc. Comput. Geom. 13, 189–202

    MathSciNet  Google Scholar 

  11. Barvinok, A.: A course in convexity. AMS (2002)

  12. Biswas, P., Ye, Y.: Semidefinite programming for Ad Hoc wireless sensor network localization. Proceedings 3rd IPSN, pp. 46–54 (2004)

  13. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM (1994)

  14. Doherty, L., Ghaoui, L.E., Pister, S.J.: Convex position estimation in wireless sensor networks. Proceedings 20th INFOCOM, Vol. 3, pp. 1655–1663 (2001)

  15. Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Moore, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. Proceedings 23rd INFOCOM (2004)

  16. Goldfarb D., Scheinberg K. (1998): Interior point trajectories in semidefinite programming. SIAM J. Opt. 8(4): 871–886

    Article  MathSciNet  Google Scholar 

  17. Gower, J.C.: Some distance properties of latent root and vector methods in multivariate analysis. Biometrika 53 325–338 (1966)

    Google Scholar 

  18. Graver, J., Servatius, B., Servatius, H.: Combinatorial rigidity. AMS (1993)

  19. Güler O., Ye Y. (1993): Convergence behavior of interior point algorithms. Math. Prog. 60, 215–228

    Article  Google Scholar 

  20. Hendrickson B. (1992): Conditions for unique graph realizations. SIAM J. Comput. 21(1): 65–84

    Article  MathSciNet  Google Scholar 

  21. Hendrickson B. (1995): The molecule problem: exploiting structure in global optimization. SIAM J. Opt. 5(4): 835–857

    Article  MathSciNet  Google Scholar 

  22. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. Preprint (2003)

  23. Laurent M. (2001): Matrix completion problems. The Encycl. Optim. 3, 221–229

    Google Scholar 

  24. Linial N., London E., Rabinovich Yu. (1995): The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2): 215–245

    Article  MathSciNet  Google Scholar 

  25. Moré J., Wu Z. (1997): Global continuation for distance geometry problems. SIAM J. Opt. 7, 814–836

    Article  Google Scholar 

  26. Savarese, C., Rabay, J. Langendoen, K.: Robust positioning algorithms for distributed Ad-Hoc wireless sensor networks. USENIX Annual Technical Conference (2002)

  27. Savvides, A., Han, C.-C., Srivastava, M.B.: Dynamic fine-grained localization in Ad-Hoc networks of sensors. Proceedings 7th MOBICOM, pp. 166–179 (2001)

  28. Savvides, A., Park, H., Srivastava, M.B.: The bits and flops of the n-hop multilateration primitive for node localization problems. Proceedings 1st WSNA, pp. 112–121 (2002)

  29. Schoenberg I.J. (1935): Remarks to Maurice Fréchet’s Article “Sur la Définition Axiomatique d’une Classe d’Espace Distanciés Vectoriellement Applicable sur l’Espace de Hilbert”. Ann. Math. 36(3): 724–732

    Article  MathSciNet  Google Scholar 

  30. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from mere connectivity. Proceedings 4th MOBIHOC, pp. 201–212 (2003)

  31. Torgerson W.S. (1952): Multidimensional scaling: I. theory and method. Psychometrika 17, 401–419

    Article  MathSciNet  Google Scholar 

  32. Trosset M.W. (2000): Distance matrix completion by numerical optimization. Comput. Opt. Appl. 17, 11–22

    Article  MathSciNet  Google Scholar 

  33. Trosset M.W. (2002): Extensions of classical multidimensional scaling via variable reduction. Comput. Stat. 17(2): 147–162

    Article  MathSciNet  Google Scholar 

  34. Young G., Householder A.S. (1938): Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyu Ye.

Additional information

A preliminary version of this paper has appeared in the Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, A.MC., Ye, Y. Theory of semidefinite programming for Sensor Network Localization. Math. Program. 109, 367–384 (2007). https://doi.org/10.1007/s10107-006-0040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0040-1

Keywords

Mathematics Subject Classification (2000)

Navigation