Skip to main content
Log in

Apoptosis induced by low-level laser in polymorphonuclear cells of acute joint inflammation: comparative analysis of two energy densities

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Anti-inflammatory property of low-level laser therapy (LLLT) has been widely described in literature, although action mechanisms are not always clarified. Thus, this study aimed to evaluate apoptosis mechanisms in the LLLT anti-inflammatory effects on the arthritis experimental model in vivo at two different energy densities (3 and 30 Jcm−2). Arthritis was induced in mice by zymosan solution, animals were distributed into five groups, and morphological analysis, immunocytochemistry and gene expressions for apoptotic proteins were performed. Data showed an anti-inflammatory effect, DNA fragmentation in polymorphonuclear (PMN) cells and alteration in gene expression of proteins related to apoptosis pathways after LLLT. p53 gene expression increased at both energy densities, Bcl2 gene expression increased at 3 Jcm−2, and Bcl2 tissue expression decreased at 30 Jcm−2. In addition, apoptosis was restricted to PMN cells. Results suggest that apoptosis in PMN cells comprise part of LLLT anti-inflammatory mechanisms by disbalance promotion between expression of pro-apoptotic (Bax and p53) and anti-apoptotic (Bcl-2) proteins, with pro-apoptotic gene expression selectively in PMN cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pap T, Korb-Pap A (2015) Cartilage damage in osteoarthritis and rheumatoid arthritis—two unequal siblings. Nat Rev Rheumatol 11(10):606–615

    Article  PubMed  Google Scholar 

  2. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361

    Article  CAS  PubMed  Google Scholar 

  3. Mcinnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7(6):429–442

    Article  CAS  PubMed  Google Scholar 

  4. Pope RM (2002) Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2(7):527–535

    Article  CAS  PubMed  Google Scholar 

  5. Chitnis D, Dickerson C, Munster AM, Winchurch RA (1996) Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J Leukoc Biol 59(6):835–839

    CAS  PubMed  Google Scholar 

  6. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157(5):1415–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29(Pt 6):684–688

    Article  CAS  PubMed  Google Scholar 

  10. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P (2005) Low level laser therapy (classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev 19(4):CD002049

    Google Scholar 

  11. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26(4):323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610

    Article  CAS  PubMed  Google Scholar 

  14. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression proteins in human fibroblast cells irradiation with red light. J Invest Dermatol 120(5):849–857

    Article  CAS  PubMed  Google Scholar 

  16. Dimitrova P, Ivanovskaa N, Schwaebleb W, Gyurkovskaa V, Stover C (2010) The role of properdin in murine zymosan-induced arthritis. Mol Immunol 47(7–8):1458–1466

    Article  CAS  PubMed  Google Scholar 

  17. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  19. Kingsley JD, Demchak T, Mathis R (2014) Low-level laser therapy as a treatment for chronic pain. Front Physiol 5:306

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bjordal JM, Johnson MI, Lopes-Martins RAB, Bogen B, Chow R, Ljunggren AE (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Jesus JF, Spadacci-Morena DD, dos Anjos Rabelo ND, Pinfildi CE, Fukuda TY, Plapler H (2015) Low-level laser therapy in IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendon. Lasers Med Sci 30(1):153–158

    Article  PubMed  Google Scholar 

  22. Mester A (2013) Laser biostimulation. Photomed Laser Surg 31(6):237–239

    Article  PubMed  Google Scholar 

  23. Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-κB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704–713

    Article  PubMed  Google Scholar 

  24. Morgan MC, Rashid RM (2009) The effect of phototherapy on neutrophils. Int Immunopharmacol 9(4):383–388

    Article  CAS  PubMed  Google Scholar 

  25. Hemvani N, Chitnis DS, Bhagwanani NS (1999) Nitrogen and he-ne laser exposure increases apoptotic death rate for monocytes from human blood. Laser Ther 11(1):19–25

    Article  Google Scholar 

  26. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256(1):12–18

    Article  CAS  PubMed  Google Scholar 

  27. Karu TI (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17

    Article  CAS  PubMed  Google Scholar 

  28. Chen ACH, Arany PR, Huang YY, Tomkinson EM, Saleem T, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Proc. SPIE 6140, Mechanisms for Low-Light Therapy, 6140: 614001–12

  30. KARU TI (2003) Biomedical photonics handbook. CRC Press, Boca Raton

    Google Scholar 

  31. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis—the p53 network. J Cell Sci 116(Pt 20):4077–4085

    Article  CAS  PubMed  Google Scholar 

  32. Maclachlan TK, El-Deiry WS (2002) Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA 99(14):9492–7

  33. Rozenfeld-Granot G, Krishnamurthy J, Kannan K, Toren A, Amariglio N, Givol D, Rechavi G (2002) A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1. Oncogene 21(10):1469–1476

    Article  CAS  PubMed  Google Scholar 

  34. Fonseca AS, Campos VM, Magalhães LA, Paoli F (2015) Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers. Braz J Med Biol Res 48(10):929–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sergio LPS, Marciano RS, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2012) Evaluation of DNA damage induced by therapeutic low-level red laser. J Clin Exp Dermatol Res 3:166

    Google Scholar 

  36. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    Article  CAS  PubMed  Google Scholar 

  37. Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):358–383

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Conselho Nacional de Pesquisa e Desenvolvimento-CNPq (process number APQ 474405/2013-3) and Fundação de Amparo á Pesquisa do Estado de Minas Gerais-FAPEMIG (process number APQ 00432-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia Mara Januário dos Anjos.

Ethics declarations

Conflict of interest

The authors wish to declare no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Anjos, L.M.J., da Fonseca, A.d., Gameiro, J. et al. Apoptosis induced by low-level laser in polymorphonuclear cells of acute joint inflammation: comparative analysis of two energy densities. Lasers Med Sci 32, 975–983 (2017). https://doi.org/10.1007/s10103-017-2196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2196-8

Keywords

Navigation