Skip to main content

Advertisement

Log in

Efficacy of pulsed Nd:YAG laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2020

This article has been updated

Abstract

The purpose of this study was to investigate the effects of pulsed Nd:YAG laser plus glucosamine/chondroitin sulfate (GCS) in patients with knee osteoarthritis (KOA) by examining changes in pain and knee function, as well as synovial thickness (ST) and femoral cartilage thickness (FCT). Sixty-seven male patients participated, with a mean (SD) age of 53.85 (4.39) years, weight of 84.01 (4.70) kg, height of 171.51 (3.96) cm, and BMI of 28.56 (1.22). Group 1 was treated with high-intensity laser therapy (HILT), GCS, and exercises (HILT + GCS + EX). Group 2 was treated with GCS plus exercises (GCS + EX), and group 3 received placebo laser plus exercises (PL + EX). The outcomes measured were pain level and functional disability using the visual analog scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), respectively. ST and FCT were measured by ultrasound examination. Statistical analyses were performed to compare differences between baseline and after 6 weeks of treatment and then after 3 months of follow-up. Statistical significance was set at p < 0.05. VAS and WOMAC were significantly decreased in all groups after 6 weeks, with nonsignificant differences between 6 weeks and 3 months of follow-up. ST was significantly decreased in the HILT + GCS + EX group posttreatment, with nonsignificant decreases in the GCS + EX and PL + EX groups, as well as nonsignificant differences to FCT in all groups. Overall, pulsed Nd:YAG laser combined with GCS and exercises was more effective than GCS + EX and exercises alone in the treatment of KOA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 10 July 2020

    The institutional affiliation of Dr. Aly Elsayed Mohamed Elsayed should be as follow

References

  1. Arden N, Blanco F, Cooper C, Guermazi A, Hayashi D, Hunter D et al (2014) Atlas of osteoarthriti. Springer, London

    Book  Google Scholar 

  2. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646

    Article  CAS  PubMed  Google Scholar 

  3. Steultjens MP, Dekker J, van Baar ME, Oostendorp RA, Bijlsma JW (2000) Range of joint motion and disability in patients with osteoarthritis of the knee or hip. Rheumatology (Oxford) 39(9):955–961

    Article  CAS  Google Scholar 

  4. Kumm J, Tamm A, Lintrop M (2009) Association between ultrasonographic findings and bone/cartilage biomarkers in patients with early-stage knee osteoarthritis. Calcif Tissue Int 85(6):514–522

    Article  CAS  PubMed  Google Scholar 

  5. Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J (2001) Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil 82(2):183–189

    Article  CAS  PubMed  Google Scholar 

  6. Rogers MW, Wilder FV (2008) The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord 9:163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yildiz SK, Ozkan FU, Aktas I, Silte AD, Kaysin MY, Badur NB (2015) The effectiveness of ultrasound treatment for the management of knee osteoarthritis: a randomized, placebo-controlled, double-blind study. Turk J Med Sci 45(6):1187–1191

    Article  PubMed  Google Scholar 

  8. Qingguang Z, Min F, Li G, Shuyun J, Wuquan S, Jianhua L et al (2015) Gait analysis of patients with knee osteoarthritis before and after Chinese massage treatment. J Tradit Chin Med 35(4):411–416

    Article  PubMed  Google Scholar 

  9. Creamer P, Lethbridge-Cejku M, Hochberg MC (2000) Factors associated with functional impairment in symptomatic knee osteoarthritis. Rheumatology (Oxford) 39(5):490–496

    Article  CAS  Google Scholar 

  10. Al-Arfaj A, Al-Boukai AA (2002) Prevalence of radiographic knee osteoarthritis in Saudi Arabia. Clin Rheumatol 21(2):142–145

    Article  CAS  PubMed  Google Scholar 

  11. Jamtvedt G, Dahm KT, Holm I, Odegaard-Jensen J, Flottorp S (2010) Choice of treatment modalities was not influenced by pain, severity or co-morbidity in patients with knee osteoarthritis. Physiother Res Int 15(1):16–23

    PubMed  Google Scholar 

  12. Kon E, Filardo G, Drobnic M, Madry H, Jelic M, van Dijk N et al (2012) Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20(3):436–449

    Article  PubMed  Google Scholar 

  13. Jan MH, Chai HM, Wang CL, Lin YF, Tsai LY (2006) Effects of repetitive shortwave diathermy for reducing synovitis in patients with knee osteoarthritis: an ultrasonographic study. Phys Ther 86(2):236–244

    PubMed  Google Scholar 

  14. Yildiriim MA, Ucar D, Ones K (2015) Comparison of therapeutic duration of therapeutic ultrasound in patients with knee osteoarthritis. J Phys Ther Sci 27(12):3667–3670

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Oliveira Melo M, Pompeo KD, Baroni BM, Vaz MA (2016) Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: a randomized trial. J Rehabil Med 48(3):293–299

    Article  PubMed  Google Scholar 

  16. Ip D, Fu NY (2015) Can combined use of low-level lasers and hyaluronic acid injections prolong the longevity of degenerative knee joints? Clin Interv Aging 10:1255–1258

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK (2014) Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci 29(2):749–755

    Article  PubMed  Google Scholar 

  18. Yurtkuran M, Alp A, Konur S, Ozcakir S, Bingol U (2007) Laser acupuncture in knee osteoarthritis: a double-blind, randomized controlled study. Photomed Laser Surg 25(1):14–20

    Article  CAS  PubMed  Google Scholar 

  19. Hegedus B, Viharos L, Gervain M, Galfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27(4):577–584

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al Rashoud AS, Abboud RJ, Wang W, Wigderowitz C (2014) Efficacy of low-level laser therapy applied at acupuncture points in knee osteoarthritis: a randomised double-blind comparative trial. Physiotherapy 100(3):242–248

    Article  CAS  PubMed  Google Scholar 

  21. Rubio CR, Cremonezzi D, Moya M, Soriano F, Palma J, Campana V (2010) Helium-neon laser reduces the inflammatory process of arthritis. Photomed Laser Surg 28(1):125–129

    Article  PubMed  Google Scholar 

  22. Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108(1):29–34

    Article  CAS  PubMed  Google Scholar 

  23. Gur A, Cosut A, Sarac AJ, Cevik R, Nas K, Uyar A (2003) Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial. Lasers Surg Med 33(5):330–338

    Article  PubMed  Google Scholar 

  24. Tascioglu F, Armagan O, Tabak Y, Corapci I, Oner C (2004) Low power laser treatment in patients with knee osteoarthritis. Swiss Med Wkly 134(17–18):254–258

    PubMed  Google Scholar 

  25. Jang H, Lee H (2012) Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg 30(8):405–417

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alayat MS, Atya AM, Ali MM, Shosha TM (2014) Long-term effect of high-intensity laser therapy in the treatment of patients with chronic low back pain: a randomized blinded placebo-controlled trial. Lasers Med Sci 29(3):1065–1073

    Article  PubMed  Google Scholar 

  27. Alayat MS, Mohamed AA, Helal OF, Khaled OA (2016) Efficacy of high-intensity laser therapy in the treatment of chronic neck pain: a randomized double-blind placebo-control trial. Lasers Med Sci 31(4):687–694

    Article  PubMed  Google Scholar 

  28. Stiglic-Rogoznica N, Stamenkovic D, Frlan-Vrgoc L, Avancini-Dobrovic V, Vrbanic TS (2011) Analgesic effect of high intensity laser therapy in knee osteoarthritis. Coll Antropol 35(Suppl 2):183–185

    PubMed  Google Scholar 

  29. Kheshie AR, Alayat MS, Ali MM (2014) High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 29:1371–1376

    Article  PubMed  Google Scholar 

  30. Naredo E, Cabero F, Palop MJ, Collado P, Cruz A, Crespo M (2005) Ultrasonographic findings in knee osteoarthritis: a comparative study with clinical and radiographic assessment. Osteoarthritis Cartilage 13(7):568–574

    Article  CAS  PubMed  Google Scholar 

  31. Naredo E, Acebes C, Moller I, Canillas F, de Agustin JJ, de Miguel E et al (2009) Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis 68(8):1322–1327

    Article  CAS  PubMed  Google Scholar 

  32. Maly MR, Costigan PA, Olney SJ (2006) Determinants of self-report outcome measures in people with knee osteoarthritis. Arch Phys Med Rehabil 87(1):96–104

    Article  PubMed  Google Scholar 

  33. Revill SI, Robinson JO, Rosen M, Hogg MI (1976) The reliability of a linear analogue for evaluating pain. Anaesthesia 31(9):1191–1198

    Article  CAS  PubMed  Google Scholar 

  34. Faik A, Benbouazza K, Amine B, Maaroufi H, Bahiri R, Lazrak N et al (2008) Translation and validation of Moroccan Western Ontario and McMaster Universities (WOMAC) osteoarthritis index in knee osteoarthritis. Rheumatol Int 28(7):677–683

    Article  CAS  PubMed  Google Scholar 

  35. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    CAS  PubMed  Google Scholar 

  36. Yoon CH, Kim HS, Ju JH, Jee WH, Park SH, Kim HY (2008) Validity of the sonographic longitudinal sagittal image for assessment of the cartilage thickness in the knee osteoarthritis. Clin Rheumatol 27(12):1507–1516

    Article  PubMed  Google Scholar 

  37. Hochman B, Pinfildi CE, Nishioka MA, Furtado F, Bonatti S, Monteiro PK et al (2014) Low-level laser therapy and light-emitting diode effects in the secretion of neuropeptides SP and CGRP in rat skin. Lasers Med Sci 29(3):1203–1208

    Article  PubMed  Google Scholar 

  38. Hsieh YL, Hong CZ, Chou LW, Yang SA, Yang CC (2015) Fluence-dependent effects of low-level laser therapy in myofascial trigger spots on modulation of biochemicals associated with pain in a rabbit model. Lasers Med Sci 30(1):209–216

    Article  PubMed  Google Scholar 

  39. King CE, Clelland JA, Knowles CJ, Jackson JR (1990) Effect of helium-neon laser auriculotherapy on experimental pain threshold. Phys Ther 70(1):24–30

    Article  CAS  PubMed  Google Scholar 

  40. Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381

    Article  PubMed  Google Scholar 

  41. Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T (2008) Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg 107(3):1058–1063

    Article  CAS  PubMed  Google Scholar 

  42. Samoilova KA, Zhevago NA, Petrishchev NN, Zimin AA (2008) Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. Healthy volunteers. Photomed Laser Surg 26(5):443–449

    Article  PubMed  Google Scholar 

  43. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L (2009) In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 41(3):227–231

    Article  PubMed  Google Scholar 

  44. Wang P, Liu C, Yang X, Zhou Y, Wei X, Ji Q et al (2014) Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci 29(6):1875–1885

    Article  PubMed  Google Scholar 

  45. Colombo F, Neto Ade A, Sousa AP, Marchionni AM, Pinheiro AL, Reis SR (2013) Effect of low-level laser therapy (lambda660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Braz Dent J 24(4):308–312

    Article  PubMed  Google Scholar 

  46. da Rosa AS, dos Santos AF, da Silva MM, Facco GG, Perreira DM, Alves AC et al (2012) Effects of low-level laser therapy at wavelengths of 660 and 808 nm in experimental model of osteoarthritis. Photochem Photobiol 88(1):161–166

    Article  PubMed  Google Scholar 

  47. Roberts DB, Kruse RJ, Stoll SF (2013) The effectiveness of therapeutic class IV (10 W) laser treatment for epicondylitis. Lasers Surg Med 45(5):311–317

    Article  PubMed  Google Scholar 

  48. Bayat M, Ansari E, Gholami N, Bayat A (2007) Effect of low-level helium-neon laser therapy on histological and ultrastructural features of immobilized rabbit articular cartilage. J Photochem Photobiol B 87(2):81–87

    Article  CAS  PubMed  Google Scholar 

  49. Lin YS, Huang MH, Chai CY, Yang RC (2004) Effects of helium-neon laser on levels of stress protein and arthritic histopathology in experimental osteoarthritis. Am J Phys Med Rehabil 83(10):758–765

    Article  PubMed  Google Scholar 

  50. Sawitzke AD, Shi H, Finco MF, Dunlop DD, Bingham CO 3rd, Harris CL et al (2008) The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum 58(10):3183–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sawitzke AD, Shi H, Finco MF, Dunlop DD, Harris CL, Singer NG et al (2010) Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis 69(8):1459–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kahan A, Uebelhart D, De Vathaire F, Delmas PD, Reginster JY (2009) Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 60(2):524–533

    Article  CAS  PubMed  Google Scholar 

  53. Ferreira de Meneses SR, Hunter DJ, Young Docko E, Pasqual Marques A (2015) Effect of low-level laser therapy (904 nm) and static stretching in patients with knee osteoarthritis: a protocol of randomised controlled trial. BMC Musculoskelet Disord 16:252

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang MH, Lin YS, Yang RC, Lee CL (2003) A comparison of various therapeutic exercises on the functional status of patients with knee osteoarthritis. Semin Arthritis Rheum 32(6):398–406

    Article  PubMed  Google Scholar 

  55. Weng MC, Lee CL, Chen CH, Hsu JJ, Lee WD, Huang MH et al (2009) Effects of different stretching techniques on the outcomes of isokinetic exercise in patients with knee osteoarthritis. Kaohsiung J Med Sci 25(6):306–315

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (project # 43409008) for the financial support. The authors express their appreciation to all subjects who participated in this study with their consent and cooperation and would like to give special thanks to their colleagues at the Department of Physical Therapy, Faculty of Applied Medical Science, Umm Al-Qura University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salaheldien Mohamed Alayat.

Ethics declarations

The University’s Ethics in Research Committee (Protocol number 43409008), Umm Al-Qura University approved the study. The study has been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Conflict of interest

The authors received research grants from the Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University, Mecca, Saudi Arabia (project # 43409008).

Role of the funding source

The Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University, Mecca, Saudi Arabia, is the only institution or organization providing financial support to research works of the faculty members of Umm Al-Qura University. It does not have any investment interest.

Informed consent

Patients signed a written consent form for study participation and their agreement for publication of the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayat, M.S.M., Aly, T.H.A., Elsayed, A.E.M. et al. Efficacy of pulsed Nd:YAG laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 32, 503–511 (2017). https://doi.org/10.1007/s10103-017-2141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2141-x

Keywords

Navigation