Skip to main content

Advertisement

Log in

CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

CO2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψm) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψm after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO2 laser-exposed ADSC that could be exploited for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, Zhang H, Hu Q, Du J (2014) Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 9(2):e88348. doi:10.1371/journal.pone.0088348

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dancakova L, Vasilenko T, Kovac I, Jakubcova K, Holly M, Revajova V, Sabol F, Tomori Z, Iversen M, Gal P, Bjordal JM (2014) Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomed Laser Surg 32(4):198–204. doi:10.1089/pho.2013.3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu QH, Zhao C, Zhu JG, Chen MJ, Liu QH (2015) Helium-neon laser therapy in the treatment of hydroxyapatite orbital implant exposure: a superior option. Exp Ther Med 10(3):1074–1078. doi:10.3892/etm.2015.2589ETM-0-0-2589

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuby H, Maltz L, Oron U (2009) Implantation of low-level laser irradiated mesenchymal stem cells into the infarcted rat heart is associated with reduction in infarct size and enhanced angiogenesis. Photomed Laser Surg 27(2):227–233. doi:10.1089/pho.2008.2272

    Article  CAS  PubMed  Google Scholar 

  5. Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39(4):373–378. doi:10.1002/lsm.20492

    Article  PubMed  Google Scholar 

  6. Mvula B, Moore TJ, Abrahamse H (2010) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39. doi:10.1007/s10103-008-0636-1

    Article  CAS  PubMed  Google Scholar 

  7. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22(4):212–218. doi:10.1002/(SICI)1096-9101(1998)22:4<212::AID-LSM5>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  8. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453. doi:10.1371/journal.pone.0022453PONE-D-11-03047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4. doi:10.1186/1423-0127-16-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reilly MJ, Cohen M, Hokugo A, Keller GS (2010) Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin. Arch Facial Plast Surg 12(5):321–325. doi:10.1001/archfacial.2010.3812/5/321

    Article  PubMed  Google Scholar 

  11. Orringer JS, Kang S, Johnson TM, Karimipour DJ, Hamilton T, Hammerberg C, Voorhees JJ, Fisher GJ (2004) Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin. Arch Dermatol 140(11):1326–1332

    Article  PubMed  Google Scholar 

  12. Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5):804–810. doi:10.1002/stem.1076

    Article  CAS  PubMed  Google Scholar 

  13. Moon KM, Park YH, Lee JS, Chae YB, Kim MM, Kim DS, Kim BW, Nam SW, Lee JH (2012) The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci 13(1):1239–1257. doi:10.3390/ijms13011239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Zhang JA, Guo SL, Wang S, Wu D, Wang Y, Luo D, Zhou BR (2015) Antiphotoaging effect of conditioned medium of dedifferentiated adipocytes on skin in vivo and in vitro: a mechanistic study. Stem Cells Dev 24(9):1096–1111. doi:10.1089/scd.2014.0321

    Article  CAS  PubMed  Google Scholar 

  15. Jianu DM, Filipescu M, Jianu SA, Nita AC, Chirita DA (2012) The sinergy between lasers and adipose surgery in face and neck rejuvenation: a new approach from personal experience. Laser Ther 21(3):215–222. doi:10.5978/islsm.12-OR-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou BR, Xu Y, Guo SL, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ, Luo D (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed Res Int 2013:519126. doi:10.1155/2013/519126

    PubMed  PubMed Central  Google Scholar 

  17. Xu X, Wang HY, Zhang Y, Liu Y, Li YQ, Tao K, Wu CT, Jin JD, Liu XY (2014) Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and beta-catenin signaling. Cell Biosci 4:24. doi:10.1186/2045-3701-4-2418

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27(7–8):873–881

    Article  CAS  PubMed  Google Scholar 

  19. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46(1):126–138

    Article  CAS  PubMed  Google Scholar 

  20. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120(Pt 5):838–848

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari BK, Kumar M, Micheal A, Mabalirajan U, Ghosh B, Sinha Roy S, Agrawal A (2013) Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis 4:e461. doi:10.1038/cddis.2012.21322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rojas E, Rodriguez-Molina D, Bolli P, Israili ZH, Faria J, Fidilio E, Bermudez V, Velasco M (2014) The role of adiponectin in endothelial dysfunction and hypertension. Curr Hypertens Rep 16(8):463. doi:10.1007/s11906-014-0463-7

    Article  PubMed  Google Scholar 

  23. Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, Funahashi T, Walsh K (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 279(2):1304–1309. doi:10.1074/jbc.M310389200

    Article  CAS  PubMed  Google Scholar 

  24. Jo DI, Yang HJ, Kim SH, Kim CK, Park HJ, Choi HG, Shin DH, Uhm KI (2013) Coverage of skin defects without skin grafts using adipose-derived stem cells. Aesthetic Plast Surg 37(5):1041–1051. doi:10.1007/s00266-013-0191-4

    Article  PubMed  Google Scholar 

  25. Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, Sato K, Inoue K, Suga H, Eto H, Kato H, Harii K (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16(2):169–175. doi:10.1111/j.1524-4741.2009.00873.xTBJ87326

    Article  PubMed  Google Scholar 

  26. Petit JY, Clough K, Sarfati I, Lohsiriwat V, de Lorenzi F, Rietjens M (2010) Lipofilling in breast cancer patients: from surgical technique to oncologic point of view. Plast Reconstr Surg 126(5):262e–263e. doi:10.1097/PRS.0b013e3181ef94a8

    Article  PubMed  Google Scholar 

  27. Anwer AG, Gosnell ME, Perinchery SM, Inglis DW, Goldys EM (2012) Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence. Lasers Surg Med 44(9):769–778. doi:10.1002/lsm.22083

    Article  PubMed  Google Scholar 

  28. Chaudhari P, Ye Z, Jang YY (2014) Roles of reactive oxygen species in the fate of stem cells. Antioxid Redox Signal 20(12):1881–1890. doi:10.1089/ars.2012.4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sart S, Song L, Li Y (2015) Controlling redox status for stem cell survival, expansion, and differentiation. Oxid Med Cell Longev 2015:105135. doi:10.1155/2015/105135

    Article  PubMed  PubMed Central  Google Scholar 

  30. Migliario M, Pittarella P, Fanuli M, Rizzi M, Reno F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29(4):1463–1467. doi:10.1007/s10103-014-1556-x

    Article  PubMed  Google Scholar 

  31. Alexsandra da Silva Neto Trajano L, da Silva CL, de Carvalho SN, Cortez E, Mencalha AL, de Souza da Fonseca A, Stumbo AC (2016) Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser. Lasers Med Sci. doi:10.1007/s10103-016-1909-8

    PubMed  Google Scholar 

  32. Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91(2):411–416. doi:10.1111/php.12397

    Article  CAS  PubMed  Google Scholar 

  33. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calza L (2009) Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med 9:8. doi:10.1186/1472-6882-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang H, Hou JF, Shen Y, Wang W, Wei YJ, Hu S (2010) Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med 14(7):1975–1987. doi:10.1111/j.1582-4934.2009.00886.x35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthetic Plast Surg 39(5):778–782. doi:10.1007/s00266-015-0524-6

    Article  PubMed  Google Scholar 

  36. Carriere A, Ebrahimian TG, Dehez S, Auge N, Joffre C, Andre M, Arnal S, Duriez M, Barreau C, Arnaud E, Fernandez Y, Planat-Benard V, Levy B, Penicaud L, Silvestre JS, Casteilla L (2009) Preconditioning by mitochondrial reactive oxygen species improves the proangiogenic potential of adipose-derived cells-based therapy. Arterioscler Thromb Vasc Biol 29(7):1093–1099. doi:10.1161/ATVBAHA.109.188318

    Article  CAS  PubMed  Google Scholar 

  37. Zhou BR, Zhang T, Bin Jameel AA, Xu Y, Guo SL, Wang Y, Permatasari F, Luo D (2016) The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation. J Cosmet Laser Ther 1–11. doi:10.3109/14764172.2015.1114638

  38. Kim JH, Choi SC, Park CY, Park JH, Choi JH, Joo HJ, Hong SJ, Lim DS (2016) Transplantation of immortalized CD34+ and CD34- adipose-derived stem cells improve cardiac function and mitigate systemic pro-inflammatory responses. PLoS One 11(2):e0147853. doi:10.1371/journal.pone.0147853PONE-D-15-43409

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Constantin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, A., Dumitrescu, M., Mihai (Corotchi), M.C. et al. CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules. Lasers Med Sci 32, 117–127 (2017). https://doi.org/10.1007/s10103-016-2093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2093-6

Keywords

Navigation