Skip to main content
Log in

Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) has been suggested as a resource capable of increasing resistance to fatigue and enhancing muscle performance through its metabolic and photochemical effects. This study evaluated the immediate effects of the application of LLLT on neuromuscular performance of the plantar ankle flexors in healthy subjects through a fatigue-induced protocol. This is a randomized controlled clinical trial, attended by 60 young and physically active volunteers of both genders. The subjects were randomly assigned into three groups, control, placebo, and laser, and underwent a preliminary evaluation of the isokinetic performance of plantar flexors and electromyographic activity of the soleus muscle to ensure homogeneity between groups. After the application of the respective intervention protocols, participants were induced to fatigue by performing 100 isokinetic concentric contractions of ankle plantar flexors at a speed of 90°/s. The dynamometric fatigue index (DFI) and median frequency were recorded during the fatigue protocol for comparison between groups. The group receiving the laser application showed significantly lower dynamometric fatigue index (p = 0.036) when compared to control and placebo groups. In relation to the median frequency during the fatigue test, there was a decrease in all groups, however with no differences between them. We suggest that LLLT being applied prior to exercise can reduce the fatigue index in the ankle plantar flexors of healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Enoka R, Stuart D (1992) Neurobiology of muscle fatigue. J Apll Physiol 72(5):1631–1648

    CAS  Google Scholar 

  2. Gandevia SC (2001) Spinal and supraespinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  3. Kirkendall DT (1990) Mechanisms of peripheral fatigue. Med Sci Sports Exerc 22(4):444–449

    Article  CAS  PubMed  Google Scholar 

  4. Billaut F, Basset FA, Giacomoni M, Lemaitre F, Tricot V, Falgairette G (2006) Effect of high-intensity intermittent cycling sprints on neuromuscular activity. J Sports Med 27(1):25–30

    CAS  Google Scholar 

  5. Schllings ML, Hoefsloot W, Stegeman DF, Zwarts MJ (2003) Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J App Physiol 90:562–568

    Article  Google Scholar 

  6. Westerblad H, Bruton JD, Katz A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res 316(18):3093–3099

    Article  CAS  PubMed  Google Scholar 

  7. Bottinelli R, Westerblad H (2011) Reactive oxygen and nitrogen species in skeletal muscle: acute and long-term effects. J Physiol 589(9):2117–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? Physiology 17:17–21

    CAS  Google Scholar 

  9. Pastore D, Martinho CD, Bosco G, Passarella S (1996) Stimulation of ATP synthesis via oxidative phosphorylation in wheat mitochondria irradiated with helium-neon laser. Biochem Mol Biol Int 39(1):149–157

    CAS  PubMed  Google Scholar 

  10. Fukuda TY, Jesus JF, Santos MG, Cazarini Junior C, Tanji MM, Plapler H (2010) Calibration of low-level laser therapy equipment. Braz J Phys Ther 14(4):303–308

    Article  Google Scholar 

  11. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680

    Article  CAS  PubMed  Google Scholar 

  12. Leal Junior ECP, Lopes-Martins RAB, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431

    Article  PubMed  Google Scholar 

  13. Vieira WHB, Ferraresi C, Perez SEA, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504

    Article  PubMed  Google Scholar 

  14. Leal Junior ECP, Lopes-Martins RAB, Frigo L, De Marchi T, Rossi RP, Godoi V, Tomazoni SS, Silva DP, Basso M, Lotti Filho P, Corsetti FV, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532

    Article  PubMed  Google Scholar 

  15. Leal Junior ECP, Vanin AA, Miranda EF, Carvalho PTC, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939

    Article  PubMed  Google Scholar 

  16. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? J Athl Train 48(1):57–67

    PubMed  PubMed Central  Google Scholar 

  17. Gorgey AS, Wadee AN, Sobhi NN (2008) The effect of low-level therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg 26(5):501–506

    Article  PubMed  Google Scholar 

  18. Vassão PG, Toma RL, Antunes HKM, Tucci HT, Renno ACM (2016) Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation. Lasers Med Sci 31:275–282

    Article  PubMed  Google Scholar 

  19. Nampo FK, Cavalheri V, Soares FS, Ramos SP, Camargo EA (2016) Low-level phototherapy to improve exercise capacity and muscle performance: s systematic review and meta-analysis. Lasers Med Sci 1–14 doi: 10.1007/s10103-016-1977-9

  20. Ferraresi C, Oliveira TB, Zafalon LO, Reiff RBM, Baldissera V, Perez SEA, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358

    Article  PubMed  Google Scholar 

  21. Rossato M, Dellagrana RA, Lanferdini FJ, Sakugawa RL, Lazzari CD, Baroni BM, Diefenthaeler F (2016) Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers Med Sci 31:1237–1244

    Article  PubMed  Google Scholar 

  22. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  23. De Marchi T, Leal Junior ECP, Bortoli C, Tomazoni SS, Lopes-Martins RAB, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236

    Article  PubMed  Google Scholar 

  24. Almeida P, Lopes-Martins RAB, De Marchi T, Tomazoni SS, Albertini R, Corrêa JCF, Rossi RP, Machado GP, Silva DP, Bjordal JM, Leal Junior ECP (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27(2):453–458

    Article  PubMed  Google Scholar 

  25. Felismino AS, Costa EC, Aoki MS, Ferraresi C, Lemos TMAM, Vieira WHB (2014) Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med Sci 29(3):933–938

    PubMed  Google Scholar 

  26. DeLuca J, Genova HM, Capili EJ, Wylie GR (2009) Functional neuroimaging of fatigue. Phys Med Rehabil Clin N Am 20(2):325–337

    Article  PubMed  Google Scholar 

  27. Higashi RH, Toma RL, Tucci HT, Pedroni CR, Ferreira PD, Baldini GB, Aveiro MC, Borghi-Silva A, Oliveira AS, Renno AC (2013) Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg 31(12):586–594

    Article  CAS  PubMed  Google Scholar 

  28. Toma RL, Tucci HT, Antunes HKM, Pedroni CR, Oliveira AS, Buck I, Ferreira PD, Vassão PG, Renno ACM (2013) Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28(5):1375–1382

    Article  PubMed  Google Scholar 

  29. Venezian GC, Silva AMR, Mazzetto RG, Mazzetto MO (2010) Low level laser effects on pain to palpation and electromyographic activity in TMD patients: a double-blind, randomized, placebo-controlled study. Cranio 28(2):84–91

    Article  PubMed  Google Scholar 

  30. Baroni BM, Leal Junior ECP, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796

    Article  PubMed  Google Scholar 

  31. Baroni BM, Rodrigues R, Freire BB, Franke RA, Geremia JM, Vaz MA (2015) Effect of low level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115:639–647

    Article  CAS  PubMed  Google Scholar 

  32. Vanin AA, Miranda EF, Machado CSM, Paiva PRV, Albuquerque-Pontes GM, Casalechi HL, Carvalho PTC, Leal-Junior ECP (2016) Photomed Laser surg 1–10 doi: 10.1007/s10103-016-2015-7

  33. Antonialli FC, Marchi T, Tomazoni SS, Vanin AA, Grandinetti VS, Paiva PRV, Pinto HD, Miranda EF, Carvalho PTC, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29:1967–1976

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

For the financial assistance granted for this study, we are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamilson Simões Brasileiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, C.G., Borges, D.T., de Brito Macedo, L. et al. Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. Lasers Med Sci 31, 1949–1955 (2016). https://doi.org/10.1007/s10103-016-2074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2074-9

Keywords

Navigation