Skip to main content

Advertisement

Log in

Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm2. Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm2 irradiation, compared to the control and 10 J/cm2 irradiation groups (p < 0.01). The area occupied by collagen fibers in day 7 was largest in 5 J/cm2 group, followed by 1 J/cm2 group, although this difference was not significant. The day 7 tensile test demonstrated significantly greater rupture strength in healing tissues from 1 and 5 J/cm2 irradiation groups, compared to the control group (p < 0.05). Thus, LLLT with a 660-nm diode laser with energy density of 1 and 5 J/cm2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mester E, Gyenes G, Tota JG (1969) Experimentelle Untersuchungen über die Wirkung von Laserstrahlen auf die Wundheilung. Z Exper Chir 2:94–101

    Google Scholar 

  2. Mester E, Spiry T, Szende B, Tota JG (1971) Effect of laser rays on wound healing. Am J Surg 122:532–535

    Article  CAS  PubMed  Google Scholar 

  3. Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40:500–508

    Article  PubMed  Google Scholar 

  4. de Sousa AP, Paraguassú GM, Silveira NT, de Souza J, Cangussú MC, de Santos JN, Pinheiro AL (2013) Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28:981–987

    Article  PubMed  Google Scholar 

  5. Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437

    Article  CAS  PubMed  Google Scholar 

  6. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    Article  CAS  PubMed  Google Scholar 

  7. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walker MD, Rumpf S, Baxter GD, Hirst DG, Lowe AS (2000) Effect of low-intensity laser irradiation (660 nm) on a radiation-impaired wound-healing model in murine skin. Lasers Surg Med 26:41–47

    Article  CAS  PubMed  Google Scholar 

  9. Atabey A, Karademir S, Atabey N, Barutçu A (1995) The effects of the helium neon laser on wound healing in rabbits and on human skin fibroblasts in vitro. Eur J Plast Surg 18:99–102

    Google Scholar 

  10. Medrado AR, Pugliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244

    Article  PubMed  Google Scholar 

  11. Yasukawa A, Ohrui H, Koyama Y, Nagai M, Takakuda K (2007) The effect of low reactive-level laser therapy (LLLT) with helium-neon laser on operative wound healing in a rat model. J Vet Med Sci 69:799–806

    Article  PubMed  Google Scholar 

  12. Hess CT (2012) Clinical guide to skin and wound care. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  13. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  14. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  15. Haroon ZA, Raleigh JA, Greenberg CS, Dewhirst MW (2000) Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg 231:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juniantito V, Izawa T, Yamamoto E, Murai F, Kuwamura M, Yamate J (2011) Heterogeneity of macrophage populations and expression of galectin-3 in cutaneous wound healing in rats. J Comp Pathol 145:378–389

    Article  CAS  PubMed  Google Scholar 

  17. Pallotta RC, Bjordal JM, Frigo L, Leal Junior EC, Teixeira S, Marcos RL, Ramos L, Messias Fde M, Lopes-Martins RA (2011) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78

    Article  PubMed  PubMed Central  Google Scholar 

  18. Demir H, Balay H, Kirnap M (2004) A comparative study of the effects of electrical stimulation and laser treatment on experimental wound healing in rats. J Rehabil Res Dev 41:147–154

    Article  PubMed  Google Scholar 

  19. Lubart R, Friedmann H, Peled I, Grossman N (1993) Light effect on fibroblast proliferation. Laser Ther 5:55–57

    Article  Google Scholar 

  20. Liu H, Dang Y, Wang Z, Chai X, Ren Q (2008) Laser induced collagen remodeling: a comparative study in vivo on mouse model. Lasers Surg Med 40:13–19

    Article  CAS  PubMed  Google Scholar 

  21. Akasaka Y, Ono I, Yamashita T, Jimbow K, Ishii T (2004) Basic fibroblast growth factor promotes apoptosis and suppresses granulation tissue formation in acute incisional wounds. J Pathol 203:710–720

    Article  CAS  PubMed  Google Scholar 

  22. Prabhu V, Rao S, Chandra S, Kumar P, Rao L, Guddattu V, Satyamoorthy K, Mahato KK (2012) Spectroscopic and histological evaluation of wound healing progression following low level laser therapy (LLLT). J Biophotonics 5:168–184

    Article  PubMed  Google Scholar 

  23. Stadler I, Lanzafame RJ, Evens R, Narayan V, Dailey B, Buehner N, Naim JO (2001) 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med 28:220–226

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira RA, Matos AF, Barros NR, Fernandes GA, Lima AC, Nicolau RA (2013) Low-intensity laser therapy and led (light emitting diode) therapy in mechanical resistance of Rattus norvegicus chest incision with implant of steel wire for sternal suture. Braz J Biomed Eng 29:166–174

    Google Scholar 

  25. Wilgus TA (2008) Immune cells in the healing skin wound: influential players at each stage of repair. Pharmacol Res 58:112–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None of the authors have received direct or indirect benefits as a result of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Takakuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Takakuda, K. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci 31, 1683–1689 (2016). https://doi.org/10.1007/s10103-016-2038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2038-0

Keywords

Navigation