Skip to main content

Advertisement

Log in

Breast cancer detection based on serum sample surface enhanced Raman spectroscopy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Raman spectroscopy is a vibrational technique which provides information about the chemical structure. Nevertheless, since many chemicals are present in a sample at very low concentration, the Raman signal observed is extremely weak. In surface enhanced Raman scattering (SERS), Raman signals can be enhanced by many orders of magnitude when nanoparticles are used. To the best of our knowledge, this is the first report in the breast cancer detection based on serum SERS. The serum samples were obtained from 12 patients who were clinically diagnosed with advanced breast cancer and 15 controls. In the same proportion, the serum samples were mixed with colloidal gold nanoparticles of 40 nm using sonication. At least 10 spectra were collected of each serum sample using a Jobin-Yvon LabRAM Raman Spectrometer with a laser of 830 nm. Raw spectra were processed by carrying baseline correction, smoothing, and normalization and then analyzed using principle component analysis (PCA) and linear discriminant analysis (LDA). Raman spectra showed strongly enhanced bands in the 600–1800 cm −1 range due to the nanoparticle colloidal clusters observed. These Raman bands allowed identifying biomolecules present at low concentration as amide I and III, β carotene, glutathione, tryptophan, tyrosine, and phenylalanine. Preliminary results demonstrated that SERS and PCA-LDA can be used to discriminate between control and cancer samples with high sensitivity and specificity. SERS allowed short exposures and required a minimal sample preparation. The preliminary results suggest that SERS and PCA-LDA could be an excellent support technique for the breast cancer detection using serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elmore G, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. New Eng J Med 3883:1089–1096

    Article  Google Scholar 

  2. Cleveland cancer nanotechnology symposium, overcoming barriers to collaboration, October 2004

  3. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2005) Diagnosing breast cancer by using Raman spectroscopy. PNAS 102(35):12371–12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chowdary MVP, Kalyan Kumar K, Kurien J, Mathew S, Murali Krishna C (2006) Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers 83:556–569

    Article  CAS  PubMed  Google Scholar 

  5. Pichardo-Molina JL, Frausto-Reyes C, Barbosa-García O, Huerta-Franco R, González-Trujillo JL, Ramírez-Alvarado CA, Gutiérrez-Juárez G, Medina-Gutiérrez C (2006) Raman spectroscopy and multivariate analysis of serum simples from breast cancer patients. Laser Med Sci 10103:432– 438

    Google Scholar 

  6. González-Solís JL, Martínez-Espinosa JC, Torres-González LA, Jave-Suárez LF, Aguilar-Lemarroy AC, Palomares-Anda P (2014) Cervical cancer detection based on serum samples Raman spectroscopy. Lasers Med Sci 29:979–985

    Article  PubMed  Google Scholar 

  7. González-Solís JL, Martínez-Espinosa JC, Salgado-Román JM, Palomares-Anda P (2014) Monitoring of chemotherapy leukemia treatment using Raman spectroscopy and principal component analysis. Lasers Med Sci 29:1241–1249

    Article  PubMed  Google Scholar 

  8. Rabah R, Weber R, Serhatkulu GK, Cao A, Dai H, Pandya A, Naik R, Auner G, Poulik J, Klein M (2008) Diagnosis of neuroblastoma and ganglioneuroma using Raman spectroscopy. J Pediatr Surg 43:171–176

    Article  PubMed  Google Scholar 

  9. Chan S, Kwon S, Koo TW, Lee LP, Berlin AA (2003) Surface-enhanced Raman scattering of small molecules from silver coated silicon nanopores. Adv Mater 15(19):1595–1598

    Article  CAS  Google Scholar 

  10. Garrell RL (1989) Surface-enhanced Raman spectroscopy. Anal Chem 61(6):401A-402A, 404A, 406A-408A, 410A-411A

    Article  CAS  Google Scholar 

  11. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108 (1):109–116

    Article  CAS  Google Scholar 

  12. Vo-Dinh T (1995) In: Halevi P (ed) Photonic probes of surfaces. Elsevier, New York

  13. González-Solís JL, Luévano-Colmenero GH, Vargas-Mancilla J (2013) Surface enhanced Raman spectroscopy in breast cancer cells. Laser Therapy 22(1):37–42

    Article  PubMed Central  Google Scholar 

  14. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56(2):150–154

    Article  CAS  Google Scholar 

  15. Dutta R, Sharma PK, Pandey AC (2009) Surface enhanced Raman spectra of Escherichia Coli cells using ZnO nanoparticles. Digest Journal of Nanomaterials and Biostructures 4(1):83–87

    Google Scholar 

  16. Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H (2011) Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 26:3167–3174

    Article  CAS  PubMed  Google Scholar 

  17. Sánchez-Rojo SA, Martínez-zerega BE, Velázquez-Pedroza EF, Martínez-Espinosa JC, Torres-González LA, Aguilar-Lemarroy A, Jave-Suárez LF, Palomares-Anda P, González-Solís JL (2016) Cervical Cancer Detection Based on Serum Sample Surface Enhanced Raman Spectroscopy, article accepted in Rev Mex Fis

  18. Vargas-Obieta E, Aguilar-Lemarroy A, Jave-Suárez LF, González-solís JL (2015) Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. In: Proceedings of the Laser Florence Congress, Florence, Nov 2015, Medimond Proceeding

  19. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed: Nanotechnol, Biol Med 7:655–663

  20. Everitt BS, Dunn G (1991) Applied multivariate data analysis. Edward Arnold, London, pp 228–238

    Google Scholar 

  21. Stone N, Kendall C, et al. (2002) Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc 33:564–573

    Article  CAS  Google Scholar 

  22. Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Myles J, Dasari RR, Feld MS (2002) Raman microespectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J Raman Spectrosc 33:552–563

    Article  CAS  Google Scholar 

  23. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  CAS  Google Scholar 

  24. Stone N, Kendall C, Smith J, et al. (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141– 57

    Article  CAS  PubMed  Google Scholar 

  25. Boelens HF, Eiler PH, Hankemeier T (2005) Sing constrains improve the detection of differences between complex spectral data sets: LC-IR as an example. Anal Chem 77(24):7998– 8007

    Article  CAS  PubMed  Google Scholar 

  26. Kneipp K, Kneipp H, Manoharan R, Hanlon EB, Itzkan I, Dasari RR, Feld MS (1998) Extremely large enhancement factors in surface-enhanced raman scattering for molecules on colloidal gold clusters. Appl Spectrosc 52:1493–1497

    Article  CAS  Google Scholar 

  27. Kneipp K, Flemming J (1986) Surface enhanced Raman scattering (SERS) of nucleic acids adsrobed on colloidal silver particles. J Mol Struct 145:173–179

    Article  CAS  Google Scholar 

  28. Nogueira VG, Silveira L (2005) Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 10:031117–1–031117-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis González-Solís.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Obieta, E., Martínez-Espinosa, J.C., Martínez-Zerega, B.E. et al. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. Lasers Med Sci 31, 1317–1324 (2016). https://doi.org/10.1007/s10103-016-1976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1976-x

Keywords

Navigation