Skip to main content

Advertisement

Log in

In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Current therapies for treating malignant glioma exhibit low therapeutic efficiency because of strong systemic side effects and poor transport across the blood brain barrier (BBB). Herein, we combined targeted chemo-photothermal glioma therapy with a novel multifunctional drug delivery system to overcome these issues. Drug carrier transferrin-conjugated PEGylated nanoscale graphene oxide (TPG) was successfully synthesized and characterized. When loaded on the proposed TPG-based drug delivery (TPGD) system, the anticancer drug doxorubicin could pass through the BBB and improve drug accumulation both in vitro and in vivo. TPGD was found to perform dual functions in chemotherapy and photothermal therapy. Targeted TPGD combination therapy showed higher rates of glioma cell death and prolonged survival of glioma-bearing rats compared with single doxorubicin or PGD therapy. In conclusion, we developed a potential nanoscale drug delivery system for combined therapy of glioma that can effectively decrease side effects and improve therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang B, Lv L, Wang Z, Zhao Y, Wu L, Fang X et al (2014) Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis. Biomaterials 35(22):5897–907

    Article  CAS  PubMed  Google Scholar 

  2. Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol 87(4):212–51

    Article  CAS  PubMed  Google Scholar 

  3. Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  4. Lee S-M, Park H, Yoo K-H (2010) Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater 22(36):4049–53

    Article  CAS  PubMed  Google Scholar 

  5. Zhou QH, Fu A, Boado RJ, Hui EK, Lu JZ, Pardridge WM (2011) Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm 8(1):280–5

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, He H, Jia X, Lu WL, Lou J, Wei Y (2012) A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33(15):3899–908

    Article  CAS  PubMed  Google Scholar 

  7. Kim JY, Choi WI, Kim YH, Tae G (2013) Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 34(4):1170–8

    Article  CAS  PubMed  Google Scholar 

  8. Fan CS, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC et al (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34(8):2142–55

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Zhou L, Ye D, Huang S, Shao K, Huang R et al (2011) Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater 23(39):4516–7

    Article  CAS  PubMed  Google Scholar 

  10. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135(12):4799–804

    Article  CAS  PubMed  Google Scholar 

  12. Liu H, Chen D, Li L, Liu T, Tan L, Wu X et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Edit 50(4):891–5

    Article  CAS  Google Scholar 

  13. Qin XC, Guo ZY, Liu ZM, Zhang W, Wan MM, Yang BW (2013) Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J Photoch Photobio B 120:156–62

    Article  CAS  Google Scholar 

  14. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–44

    Article  CAS  PubMed  Google Scholar 

  16. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4):1121–9

    Article  CAS  PubMed  Google Scholar 

  17. Guo W, Li A, Jia Z, Yi Y, Dai H, Li H (2013) Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol 718(s 1–3):41–7

    Article  CAS  PubMed  Google Scholar 

  18. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–601

    Article  CAS  PubMed  Google Scholar 

  19. Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24(13):1722–8

    Article  CAS  PubMed  Google Scholar 

  20. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Daniel V et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–31

    Article  CAS  PubMed  Google Scholar 

  21. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–23

    Article  CAS  PubMed  Google Scholar 

  23. Ying X, Wen H, Lu WL, Du J, Guo J, Tian W et al (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141(2):183–92

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–61

    Article  CAS  PubMed  Google Scholar 

  25. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–6

    Article  CAS  PubMed  Google Scholar 

  26. Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K et al (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45–53

    Article  CAS  PubMed  Google Scholar 

  27. Liu G, Shen H, Mao J, Zhang L, Jiang Z, Sun T et al (2013) Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 5(15):6909–14

    Article  CAS  PubMed  Google Scholar 

  28. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  29. Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–31

    Article  CAS  Google Scholar 

  30. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  CAS  PubMed  Google Scholar 

  31. Ma HS, Jiang C, Zhai D, Luo YX, Chen Y, Lv F (2016) A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mate 26(8):1197–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61335011, 61275187, 21505047, and 31300691), the Natural Science Foundation of Guangdong Province of China (2014A030311024 and 2014A030310306), Specialized Research Fund for the Doctoral Program of Higher Education of China (20114407110001 and 20134407120003), the Science and Technology Project of Guangdong Province of China (2012A080203008), and the Science and Technology Innovation Project of the Education Department of Guangdong Province of China (2013KJCX0052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouyi Guo.

Ethics declarations

All animal procedures were performed according to the guidelines of South China Normal University Institutional Animal Care and Use Committee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Jin, M., Liu, Z. et al. In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas. Lasers Med Sci 31, 1123–1131 (2016). https://doi.org/10.1007/s10103-016-1955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1955-2

Keyword

Navigation