Skip to main content

Advertisement

Log in

Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

With the increasing number of strains of Candida ssp. resistant to antifungal agents, the accomplishment of researches that evaluate the effects of new therapeutic methods, like photodynamic inactivation (PDI), becomes important and necessary. Thus, the objective of this study was to verify the effects of the PDI on Candida albicans biofilms, evaluating their effects on the expression of the gene hydrolytic enzymes aspartyl proteinase (SAP5), lipase (LIP9), and phospholipase (PLB2). Clinical strains of C. albicans (n = 9) isolated from patient bearers of the virus HIV and a pattern strain ATCC 18804 were used. The quantification of gene expression was related to the production of hydrolytic enzymes using the quantitative polymerase chain reaction (qPCR) assay. For PDI, we used laser-aluminum-gallium arsenide low power (red visible, 660 nm) as a light source and the methylene blue at 300 μM as a photosensitizer. We assessed two experimental groups for each strain: (a) PDI: sensitization with methylene blue and laser irradiation and (b) control: without sensitization with methylene blue and light absence. The PDI decreased gene expression in 60 % of samples for gene SAP5 and 50 % of the samples decreased expression of LIP9 and PLB2. When we compared the expression profile for of each gene between the treated and control group, a decrease in all gene expression was observed, however no statistically significant difference (Tukey’s test/p = 0.12). It could be concluded that PDI (photosensitization with methylene blue followed by low-level laser irradiation) showed a slight reduction on the expression of hydrolytic enzymes of C. albicans, without statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Samaranayake LP, Leung WK, Jin L (2009) Oral mucosal fungal infections. Periodontology 49:39–59. doi:10.1111/j.1600-0757.2008.00291.x

    Article  Google Scholar 

  2. Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R et al (2009) Identifying infection associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 5:688–700. doi:10.1111/j.1567-1364.2009.00524.x

    Article  Google Scholar 

  3. Lass-Flörl C (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 3:197–205. doi:10.1111/j.1439-0507.2009.01691.x

    Article  Google Scholar 

  4. Ruping MJ, Vehreschild JJ, Cornely OA (2008) Patients at high risk of invasive fungal infections: when and how to treat. Drugs 14:1941–1962

    Article  Google Scholar 

  5. Coogan MM, Fidel PL Jr, Komesu MC, Maeda N, Samaranayake LP (2006) Candida and mycotic infections. Adv Dent Res 1:130–138. doi:10.1177/154407370601900124

    Article  Google Scholar 

  6. Junqueira JC, Vilela SFG, Rossoni RD, Barbosa JO, Costa ACBP, Rasteiro MC et al (2012) Oral colonization by yeasts in HIV-positive patients in Brazil. Rev Inst Med Trop Sao Paulo 1:17–24. doi:10.1590/S0036-46652012000100004

    Article  Google Scholar 

  7. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AOC (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 3:385–389. doi:10.1007/s10103-009-0706-z

    Article  Google Scholar 

  8. Souza SC, Junqueira JC, Balducci I, Ito-Koga CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. Photochem Photobiol B Biol 83(1):34–38. doi:10.1016/j.jphotobiol.2005.12.002

    Article  Google Scholar 

  9. Lambrechts SA, Aalders MCJ, Marle JV (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 5:2026–2034. doi:10.1128/AAC.49.5.2026–2034.2005

    Article  Google Scholar 

  10. Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK et al (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 4:904–909. doi:10.1111/j.1751-1097.2011.00938.x

    Article  Google Scholar 

  11. Smijs TG, Pavel S (2011) The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol 1:2–13. doi:10.1111/j.1751-1097.2010.00848.x

    Article  Google Scholar 

  12. Freire F, Costa ACBP, Pereira CA, Junior MB, Junqueira JC, Jorge AOC (2013) Comparison of the effect of rose bengal and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers Med Sci 3:949–955. doi:10.1007/s10103-013-1435-x

    Google Scholar 

  13. Lyon JP, Moreira LM, Moraes PC, Santos FV, Resende MA (2011) Photodynamic therapy for pathogenic fungi. Mycoses 5:265–271. doi:10.1111/j.1439-507.2010.01966.x

    Article  Google Scholar 

  14. Naglik J, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G et al (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 11:3266–3280. doi:10.1099/mic. 0.2008/022293-0

    Article  Google Scholar 

  15. Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C (2009) The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol 2–3:465–475. doi:10.1016/j.molimm.2009.08.019

    Article  Google Scholar 

  16. Barros LM, Boriollo MF, Alves AC, Klein MI, Gonçalves RB, Höfling JF (2008) Genetic diversity and exoenzyme activities of Candida albicans and Candida dubliniensis isolated from the oral cavity of Brazilian periodontal patients. Arch Oral Biol 12:1172–1178. doi:10.1016/j.archoralbio.2008.06.003

    Article  Google Scholar 

  17. Pereira CA, Romeiro RL, Costa ACBP, Machado AKS, Junqueira JC, Jorge AOC (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 3:341–348. doi:10.1007/s10103-010-0852-3

    Article  Google Scholar 

  18. Seneviratne CJ, Jin L, Samaranayake LP (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 7:582–590. doi:10.1111/j.1601-0825.2007.01424.x

    Article  Google Scholar 

  19. Costa ACBP, Pereira AC, Freire F, Junqueira JC, Jorge AOC (2013) Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses 56:614–622. doi:10.1111/myc.12092

    Article  PubMed  Google Scholar 

  20. Nailis H, Kucharíková S, Ricicová M, Van Dijck P, Deforce D, Nelis H, Coenye T (2010) Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114–125. doi:10.1186/1471-2180-10-114

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schöck U et al (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 12:e1003118. doi:10.1371/journal.pgen.1003118

    Article  Google Scholar 

  22. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. doi:10.1186/1471-2199-7-33

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  24. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  25. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 7:1–11

    Google Scholar 

  26. Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 1:16–20. doi:10.1016/j.jphotobiol.2007.04.011

    Article  Google Scholar 

  27. Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 2:231–237. doi:10.1007/s12038-008-0040-9

    Article  Google Scholar 

  28. Samaranayake YH, Cheung BPK, Yau JYY, Yeung SKW, Samaranayake LP (2013) Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One 5:e62902. doi:10.1371/journal.pone.0062902

    Article  Google Scholar 

  29. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 4:611–622. doi:10.1373/clinchem.2008.112797

    Article  Google Scholar 

  30. Nailis H, Coenye T, Nieuwerburgh FV, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25. doi:10.1186/1471-2199-7-25

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR (2007) Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect 5:615–622. doi:10.1007/978-1-61779-539-8_38

    Article  Google Scholar 

  32. Pierce JV, Kumamoto CA (2012) Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. M Bio 4:117–12. doi:10.1128/mBio. 00117-12

    Google Scholar 

  33. Tsang CSP, Samaranayake LP (2000) Oral yeasts and coliforms in HIV-infected individuals in Hong Kong. Mycoses 43(7–8):303–308. doi:10.1046/j.1439-0507.2000.005 84.x

    Article  CAS  PubMed  Google Scholar 

  34. Campisi G, Pizzo G, Milici ME (2002) Candidal carriage in the oral cavity of human immunodeficiency virus-infected subjects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93(3):281–286. doi:10.1067/moe.2002.120804

    Article  PubMed  Google Scholar 

  35. Sanchez-Vargas LO, Ortiz-López NG, Villar M, Moragues MD, Aguirre JM, Cashat-Cruz M et al (2005) Oral isolates colonizing infecting human immunodeficiency virus-infected and healthy persons in Mexico. J Clin Microbiol 8:4159–4162. doi:10.1128/JCM. 43.8.4159-4162.2005

    Article  Google Scholar 

  36. Back-Brito GN, Mota AJ, Vasconcellos TC, Querido SMR, Jorge AOC, Reis ASM et al (2009) Frequency of Candida spp. in the oral cavity of Brazilian HIV-positive patients and correlation with CD4 cell counts and viral load. Mycopathologia 167:81–87. doi:10.1007/s11046-008-9153-9

    Article  CAS  PubMed  Google Scholar 

  37. Capoluongo E, Moretto D, Giglio A, Belardi M, Prignano G, Crescimbeni E et al (2000) Heterogeneity of oral isolates of Candida albicans in HIV-positive patients: correlation between candidal carriage, karyotype and disease stage. J Med Microbiol 11:985–991

    Google Scholar 

  38. de Brito Costa EM, dos Santos AL, Cardoso AS, Portela MB, Abreu CM, Alviano CS (2003) Heterogeneity of metallo and serine extracellular proteinases in oral clinical isolates of Candida albicans in HIV-positive and healthy children from Rio de Janeiro, Brazil. FEMS Immunol Med Microbiol 2:173–180. doi:10.1016/S0928-8244(03)00145-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Grant: 2012/09188-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Freire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, F., de Barros, P.P., da Silva Ávila, D. et al. Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers Med Sci 30, 1511–1518 (2015). https://doi.org/10.1007/s10103-015-1747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1747-0

Keywords

Navigation