Skip to main content

Advertisement

Log in

Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such as harmonic generation (HG), especially in tissues with significant nonlinear susceptibilities such as the cornea. HG in corneal tissue has been demonstrated in nonlinear harmonic microscopy using low-power FSLs. Furthermore, the wavelength ranges of harmonic spectral emissions generated in corneal tissues are known to be phototoxic above certain intensities. We have investigated how the critical FSL parameters pulse energy, pulse repetition rate, and numerical aperture influence both second (SHG) and third harmonic generation (THG) in corneal tissue. Experimental results demonstrated corresponding increases in HG intensity with increasing repetition rate and numerical aperture. HG duration decreased with increasing repetition rate and pulse energy. The data also demonstrated a significant difference in HG between FSL parameters representing the two most common classes of FSL therapeutic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoy CL, Ferhanoglu O, Yildirim M, Kim KH, Karajanagi SS, Chan KMC et al (2014) Clinical ultrafast laser surgery: recent advances and future directions, IEEE J Sel Top Quantum Electron 20

  2. Ozulken K, Cabot F, Yoo SH (2013) Applications of femtosecond lasers in ophthalmic surgery. Expert Rev Med Devices 10:115–124

    Article  CAS  PubMed  Google Scholar 

  3. Strassl M, Wieger V, Brodoceanu D, Beer F, Moritz A, Wintner E (2008) Ultra-short pulse laser ablation of biological hard tissue and biocompatibles. J Laser Micro Nanoeng 3:30–40

    Article  CAS  Google Scholar 

  4. Dutra-Correa M, Nicolodelli G, Rodrigues JR, Kurachi C, Bagnato VS (2011) Femtosecond laser ablation on dental hard tissues—analysis of ablated profile near an interface using local effective intensity. Laser Phys 21:965–971

    Article  CAS  Google Scholar 

  5. Meesat R, Belmouaddine H, Allard JF, Tanguay-Renaud C, Lemay R, Brastaviceanu T et al (2012) Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proc Natl Acad Sci U S A 109:E2508–E2513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR (2010) Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat Nanotechnol 5:607–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Binder PS (2010) Femtosecond applications for anterior segment surgery. Eye Contact Lens 36:282–285

    Article  PubMed  Google Scholar 

  8. Daukantas P (2010) Lasers in ophthalmology. Opt Photonics News 21:28

    Google Scholar 

  9. Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB et al (2013) Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology 120:e5–e20

    Article  PubMed  Google Scholar 

  10. Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ (2012) Femtosecond laser technology in corneal refractive surgery: a review. J Refract Surg (Thorofare, NJ: 1995) 28:912–920

    Article  Google Scholar 

  11. Reddy KP, Kandulla J, Auffarth GU (2013) Effectiveness and safety of femtosecond laser-assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg 39:1297–1306

    Article  PubMed  Google Scholar 

  12. Naranjo-Tackman R (2011) How a femtosecond laser increases safety and precision in cataract surgery? Curr Opin Ophthalmol 22:53–57

    PubMed  Google Scholar 

  13. He L, Sheehy K, Culbertson W (2011) Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol 22:43–52

    PubMed  Google Scholar 

  14. Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047

    Article  CAS  Google Scholar 

  15. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  CAS  PubMed  Google Scholar 

  16. Heisterkamp A, Ripken T, Mamom T, Drommer W, Welling H, Ertmer W et al (2002) Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl Phys B-Lasers Opt 74:419–425

    Article  CAS  Google Scholar 

  17. Harzic RL, Bückle R, Wüllner C, Donitzky C, König K (2005) Laser safety aspects for refractive eye surgery with femtosecond laser pulses. Med Laser Appl 20:233–238

    Article  Google Scholar 

  18. Boyd R (2003) Nonlinear optics. Academic, San Diego

    Google Scholar 

  19. Hecht E (2002) Optics. Pearson, San Francisco

    Google Scholar 

  20. Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512

    Article  CAS  PubMed  Google Scholar 

  21. Bueno JM, Gualda EJ, Artal P (2011) Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy. Cornea 30:692–701

    Article  PubMed  Google Scholar 

  22. Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129

    CAS  PubMed  Google Scholar 

  23. Boyd R (2008) Nonlinear optics, 3rd edn. Academic, Burlington

    Google Scholar 

  24. New G (2011) An introduction to nonlinear optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Jay L, Brocas A, Singh K, Kieffer JC, Brunette I, Ozaki T (2008) Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express 16:16284

    Article  CAS  PubMed  Google Scholar 

  26. Olivier N, Aptel F, Plamann K, Schanne-Klein M-C, Beaurepaire E (2010) Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea. Opt Express 18:5028–5040

    Article  CAS  PubMed  Google Scholar 

  27. Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T et al (2007) Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci 48:1087–1094

    Article  PubMed Central  PubMed  Google Scholar 

  28. Stoller P, Reiser KM, Celliers PM, Rubenchik AM (2002) Polarization-modulated second harmonic generation in collagen. Biophys J 82:3330–3342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lubatschowski H (2008) Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg 24:102–107

    Google Scholar 

  30. Nuzzo V, Savoldelli M, Legeais JM, Plamann K (2010) Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser. J Biomed Opt 15:038003

    Article  PubMed  Google Scholar 

  31. Nuzzo V, Plamann K, Savoldelli M, Merano M, Donate D, Albert O et al (2007) In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty. J Biomed Opt 12:064032

    Article  PubMed  Google Scholar 

  32. Glickman RD (2011) Ultraviolet phototoxicity to the retina. Eye Contact Lens 37:196–205

    Article  PubMed  Google Scholar 

  33. Glickman RD (2002) Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 21:473–490

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Seregard S, Algvere PV (2006) Photochemical damage of the retina. Surv Ophthalmol 51:461–481

    Article  PubMed  Google Scholar 

  35. Zigman S, Vaughan T (1974) Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol 13:462–465

    CAS  PubMed  Google Scholar 

  36. Varma SD, Hegde KR, Kovtun S (2008) UV-B-induced damage to the lens in vitro: prevention by caffeine. J Ocul Pharmacol Ther 24:439–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zigman S (1995) Environmental near-UV radiation and cataracts. Optom Vis Sci 72:899–901

    Article  CAS  PubMed  Google Scholar 

  38. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924

    Article  CAS  Google Scholar 

  39. Calhoun W, Kernik D, Beylin A, Weiblinger R, Ilev I (2013) Nonlinear optical frequency conversions of a femtosecond laser in cornea tissue, In SPIE Photonics West, San Francisco

  40. Calhoun W, Ilev IK (2014) Effect of femtosecond laser pulse energy and repetition rate on laser induced second and third harmonic generation in corneal tissue, In CLEO: Applications and Technology, p. ATh3P. 5.

Download references

Acknowledgments

The mention of commercial products, their sources, or their use in connection with material reported here is not to be construed as either an actual or implied endorsement of such products by the U.S. Food and Drug Administration (FDA). This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Calhoun III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calhoun, W.R., Ilev, I.K. Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue. Lasers Med Sci 30, 1341–1346 (2015). https://doi.org/10.1007/s10103-015-1726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1726-5

Keywords

Navigation