Skip to main content
Log in

The bactericidal effect of 470-nm light and hyperbaric oxygen on methicillin-resistant Staphylococcus aureus (MRSA)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

It has been shown that, in vitro, hyperbaric oxygen (HBO) suppresses 28 % bacterial growth, while 470-nm blue light alone suppresses up to 92 % methicillin-resistant Staphylococcus aureus (MRSA) in one application in vitro. Therefore, we determined if combined 470-nm light (55 J/cm2) and HBO will yield 100 % bacterial suppression in experimental simulation of mild, moderate or severe MRSA infection. We cultured MRSA at 3 × 106, 5 × 106, 7 × 106, 8 × 106, or 12 × 106 CFU/ml and treated each concentration in four groups as follows: (1) control (no treatment) (2) photo-irradiation only, (3) photo-irradiation then HBO, (4) HBO only, and (5) HBO then photo-irradiation. Bacteria colonies were then quantified. The results showed that at each bacterial concentration, HBO alone was significantly less effective in suppressing MRSA than photo-irradiation or combined HBO and photo-irradiation (p < 0.0001). Similarly, at no bacterial concentration did combined HBO and 470-nm light treatment yield a statistically better result than 470-nm light alone (p > 0.05), neither did HBO treatment either before or after irradiation make a difference. Furthermore, at no bacterial concentration was 100 % MRSA suppression achieved. Indeed, the maximum bacterial suppression attained was in the mild infection model (3 × 106 CFU/ml), with blue light producing 97.3 ± 0.2 % suppression and HBO + 55 J/cm2 yielding 97.5 ± 2.5 % suppression. We conclude that (1) HBO and 470-nm light individually suppress MRSA growth; (2) 470-nm blue light is more effective in suppressing MRSA than HBO; and (3) HBO did not act synergistically to heighten the bactericidal effect of 470-nm light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in communities. J Clin Microbiol 40(11):4289–4294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Moellering RC (2006) The growing menace of community-acquired methicillin-resistant Staphylococcus aureus. Ann Intern Med 144(5):368–370

    Article  PubMed  Google Scholar 

  3. Bures S, Fishbain JT, Uyehara CFT, Parker JM, Berg BW (2000) Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. Am J Infect Control 28(6):465–471

    Article  CAS  PubMed  Google Scholar 

  4. Graham PL, Lin SX, Larson EL (2006) A US population-based survey of Staphylococcus aureus colonization. Ann Intern Med 144(5):318–325

    Article  PubMed  Google Scholar 

  5. Klevens R, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771

    Article  CAS  PubMed  Google Scholar 

  6. Diep BA, Otto M (2008) The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16(8):361–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mccullough AC, Seifried M, Zhao X, Haase J, Kabat WJ, Yogev R, Blumenthal RM, Mukundan D (2011) Higher incidence of perineal community acquired MRSA infections among toddlers. BMC Pediatr 11:96

    Article  PubMed Central  PubMed  Google Scholar 

  8. Miu-ling W, Kwok-ming P, Yuen-kong W, Shuk-Kwan C, Lai-key K, Sik-on P (2014) An outbreak of community-associated methicillin-resistant Staphylococcus aureus infection in a boarding school in Hong Kong Special Administrative Region (China). Western Pac Surveill Response J 5(1):1–6

    Article  PubMed Central  PubMed  Google Scholar 

  9. Enwemeka CS (2013) Antimicrobial blue light: an emerging alternative to antibiotics. Photomed Laser Surg 31(11):1–3

    Article  Google Scholar 

  10. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405 nm SLD photo-destroys methicillin resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737

    Article  PubMed  Google Scholar 

  11. Enwemeka CS, Williams D, Hollosi S, Yens D (2008) Blue light photo destroys methicillin resistant Staphylococcus aureus (MRSA) in-vitro. In: Waynant R, Tata D (eds) Lecture notes in electrical Engineering, vol 12. Springer Publishers, New York, pp 3–37

    Google Scholar 

  12. Enwemeka CS, Williams D, Hollosi S, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226

    Article  PubMed  Google Scholar 

  13. Lipovsky A, Nitzen Y, Friedmann H, Lubart R (2009) Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem Photobiol 85(1):255–260

    Article  CAS  PubMed  Google Scholar 

  14. Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, Kielian T, Hamblin MR (2013) Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31(11):531–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bumah VV, Masson-Meyers DS, Cashin SE, Enwemeka CS (2013) Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA). Photomed Laser Surg 31(11):547–553

    Article  PubMed  Google Scholar 

  16. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ (2014) 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 88(1):1–11

    Article  CAS  PubMed  Google Scholar 

  17. Otto CC, Haydel SE (2013) Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures. PLoS ONE 8(5):e64068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Müller P, Alber DG, Turnbull L, Schlothauer RC, Carter DA, Whitchurch CB, Harry EJ (2013) Synergism between Medihoney and Rifampicin against methicillin-resistant Staphylococcus aureus (MRSA). PLoS ONE 8(2):e57679

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tsuneyoshi I, Boyle WA III, Kanmura Y, Fujimoto T (2001) Hyperbaric hyperoxia suppresses growth of Staphylococcus aureus, including methicillin-resistant strains. J Anesth 15(1):29–32

    Article  CAS  PubMed  Google Scholar 

  20. Turhan V, Sacar S, Uzun G, Mustafa S, Yildz S, Ceran N, Gorur R, Oncul O (2009) Hyperbaric oxygen as adjunctive therapy in experimental mediastinitis. J Surg Res 155(1):111–115

    Article  CAS  PubMed  Google Scholar 

  21. Gu N, Nagatomo F, Fujino H, Takeda I, Tsuda K, Ishihara A (2010) Hyperbaric oxygen exposure improves blood glucose level and muscle oxidative capacity in rats with type 2 diabetes. Diabetes Technol Ther 12(2):125–133

    Article  CAS  PubMed  Google Scholar 

  22. Novaleski C (2009) Does hyperbaric oxygenation therapy benefit in the treatment of non-healing wounds in diabetic patients? Internet J Acad Physician Assist 6(2):4

    Google Scholar 

  23. Michalski D, Hartig W, Schneider D, Hobohm C (2011) Use of normobaric and hyperbaric oxygen in acute focal cerebral ischemia - a preclinical and clinical review. Acta Neurol Scand 123(2):85–97

    Article  CAS  PubMed  Google Scholar 

  24. Fischer BR, Palkovic S, Holling M, Wölfer J, Wassmann H (2010) Rationale of hyperbaric oxygenation in cerebral vascular insult. Curr Vasc Pharmacol 8(1):35–43

    Article  CAS  PubMed  Google Scholar 

  25. Zhao B, Meng LX, Ding YY, Cao YY (2014) Hyperbaric oxygen treatment produces an antinociceptive response phase and inhibits astrocyte activation and inflammatory response in a rat model of neuropathic pain. J Mol Neurosci 53(2):251–261

    Article  CAS  PubMed  Google Scholar 

  26. Whelan HT, Niezgoda JA, Kindwall EP, Cabigas B, Lewis MC (2006) Hyperbaric oxygenation. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation, vol 4, 2nd edn. Wiley-Interscience, Hoboken, pp 29–33

    Google Scholar 

  27. Dennog C, Hartmann A, Frey G, Speit G (1996) Detection of DNA damage after hyperbaric oxygen (HBO) therapy. Mutagenesis 11(6):605–609

    Article  CAS  PubMed  Google Scholar 

  28. Shandley S, Prato-Matthews K, Cox J, Abplanalp A, Romano D, Kalns J, Michaelson R (2010) Efficacy of hyperbaric oxygen therapy in a mouse model of implant-associated osteomyelitis. J Orthop Res 30(2):203–208

    Article  Google Scholar 

  29. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75(7):1932–1937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ardic N, Yildiz S, Cimsit M, Turhan V, Ozyurt M, Haznederoglu T (2006) The effect of hyperbaric oxygenation on the in vitro growth of Escherichia coli in environments with and without blood cells. Ann Microbiol 56(1):77–79

    Article  CAS  Google Scholar 

  31. Tally FP, Sullivan CE (1981) Metronidazole: in vitro activity, pharmacology and efficacy in anaerobic bacterial infections. Pharmacotherapy 1(1):28–38

    CAS  PubMed  Google Scholar 

  32. Jamieson D, Chance B, Cadenas E, Bovens A (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719

    Article  CAS  PubMed  Google Scholar 

  33. Park MK, Muhvich KH, Myers RAM, Marzella L (2004) Effects of hyperbaric oxygen in infectious diseases: basic mechanisms. In: Kindwall EP, Whelan HT (eds) Hyperbaric Medicine Practice. Best Publishing, Flagstaff, pp 141–172

    Google Scholar 

  34. Cimşit M, Uzun G, Yildiz S (2009) Hyperbaric oxygen therapy as an anti-infective agent. Expert Rev Anti-Infect Ther 7(8):1015–1026

    Article  PubMed  Google Scholar 

  35. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy – an introduction. In: Hamblin MR, Anders JJ, Waynant RW (eds) Mechanisms for low-light therapy. Proceedings of the International Society for Optical Engineering, vol 6140, Bellingham, p 1–12

  36. Maclean M, Macgregor SJ, Anderson JG, Woolsey GA (2008) The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B 92(3):180–184

    Article  CAS  PubMed  Google Scholar 

  37. Udo EE, Pearman JW, Brubb WB (1993) Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 25(2):97–108

    Article  CAS  PubMed  Google Scholar 

  38. Jarvis WR, Jarvis AA, Chinn RY (2010) National prevalence of methicillin resistant Staphylococcus aureus in inpatients at the United States health care facilities. Am J Infect Control 40(3):194–200

    Article  Google Scholar 

  39. Miller LG, Diep BA (2008) Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(5):752–760

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Diep BA, Villaruza AE, Braughtona KR, Jiang X, DeLeoa FR, Chambers HF, Lub Y, Otto M (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 106(14):5883–5888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tenover FC, McDougal LK, Goering RV, Killgore G, Projan SJ, Patel JB, Dunman PM (2006) Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J Clin Microbiol 44(1):108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Clinical and Translational Science Award (CTSA) program of the National Center for Research Resources and the National Center for Advancing Translational Sciences (Grant: UL1RR031973), and by the College of Health Sciences, University of Wisconsin, Milwaukee, USA.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukuka Samuel Enwemeka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumah, V.V., Whelan, H.T., Masson-Meyers, D.S. et al. The bactericidal effect of 470-nm light and hyperbaric oxygen on methicillin-resistant Staphylococcus aureus (MRSA). Lasers Med Sci 30, 1153–1159 (2015). https://doi.org/10.1007/s10103-015-1722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1722-9

Keywords

Navigation