Skip to main content

Advertisement

Log in

Effects of light-emitting diode (LED) therapy on skeletal muscle ischemia reperfusion in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy has been shown to decrease ischemia–reperfusion injuries in the skeletal muscle by induction of synthesis of antioxidants and other cytoprotective proteins. Recently, the light-emitting diode (LED) has been used instead of laser for the treatment of various diseases because of its low operational cost compared to the use of a laser. The objective of this work was to analyze the effects of LED therapy at 904 nm on skeletal muscle ischemia–reperfusion injury in rats. Thirty healthy male Wistar rats were allocated into three groups of ten rats each as follows: normal (N), ischemia–reperfusion (IR), and ischemia–reperfusion + LED (IR + LED) therapy. Ischemia was induced by right femoral artery clipping for 2 h followed by 2 h of reperfusion. The IR + LED group received LED irradiation on the right gastrocnemius muscle (4 J/cm2) immediately and 1 h following blood supply occlusion for 10 min. At the end of trial, the animals were euthanized and the right gastrocnemius muscles were submitted to histological and histochemical analysis. The extent of muscle damage in the IR + LED group was significantly lower than that in the IR group (P < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in the IR group were significantly increased (P < 0.05). The muscle tissue glutathione (GSH), superoxide dismutases (SOD), and catalase (CAT) levels in the IR group were significantly lower than those in the subjects in other groups. From the histological and histochemical perspective, the LED therapy has alleviated the metabolic injuries in the skeletal muscle ischemia reperfusion in this experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takhtfooladi MA, Jahanshahi A, Sotoudeh A, Jahanshahi G, Aslani K, Khansari M, Adibi S, Takhtfooladi HA (2012) Effects of N-acetylcysteine upon the rat serum enzyme changes in skeletal muscle ischemia reperfusion. Ann Biol Res 3(8):4099–4102

    CAS  Google Scholar 

  2. Takhtfooladi MA, Jahanshahi A, Sotoudeh A et al (2012) Synergistic protective effect of ischemic preconditioning technique in combination of N-acetylcysteine on skeletal muscle ischemia reperfusion injury in rat; Histopathological study. Eur J Exp Biol 2(5):1766–1770

    CAS  Google Scholar 

  3. Takhtfooladi MA, Jahanshahi G, Sotoudeh A, Jahanshahi A (2013) Protective effects of N-acetylcysteine on myocardial injury induced by hindlimb ischaemia–reperfusion: a histological study in rat model. Comp Clin Pathol. doi:10.1007/s00580-013-1768-7

    Google Scholar 

  4. Takhtfooladi MA, Jahanshahi A, Sotoudeh A et al (2013) Effect of tramadol on lung injury induced by skeletal muscle ischemia-reperfusion: an experimental study. J Bras Pneumol 39(4):434–439

    Article  PubMed Central  PubMed  Google Scholar 

  5. Takhtfooladi MA, Jahanshahi A, Sotoudeh A et al (2013) Neuroprotective effects of tramadol on cerebral injuries caused by hind limb ischaemia/reperfusion in rats. Comp Clin Pathol. doi:10.1007/s00580-013-1753-1

    Google Scholar 

  6. Takhtfooladi MA, Jahanshahi A, Jahanshahi GH, Sotoudeh A, Takhtfooladi HA, Khansari M (2012) Protective effect of N-acetylcysteine on kidney as a remote organ after skeletal muscle ischemia-reperfusion. Acta Cir Bras 27(9):611–615

    Article  PubMed  Google Scholar 

  7. Sotoudeh A, Takhtfooladi MA, Jahanshahi A, Khiabanian Asl AH, Takhtfooladi HA, Khansari M (2012) Effect of N-acetylcysteine on lung injury induced by skeletal muscle ischemia-reperfusion. Histopathological study in rat model. Acta Cir Bras 27(2):168–171

    Article  PubMed  Google Scholar 

  8. Takhtfooladi MA, Jahanshahi A, Sotoudeh A, Daneshi MH, Khansari M, Takhtfooladi HA (2013) The antioxidant role of N-acetylcysteine on the testicular remote injury after skeletal muscle ischemia and reperfusion in rats. Pol J Pathol 64(3):204–209. doi:10.5114/PJP.2013.38140

    Article  CAS  PubMed  Google Scholar 

  9. da Silveira M, Yoshida WB (2004) Ischemia and reperfusion in skeletal muscle injury mechanisms and treatment perspectives. J Vasc Br 3(4):367–378

    Google Scholar 

  10. Brunelli GA, Brunelli GR (1995) Tissue changes at different periods of ischemia. Int Angiol 14(3):253–263

    CAS  PubMed  Google Scholar 

  11. Gordon L, Buncke HJ, Townsend JJ (1978) Histological changes in skeletal muscle after temporary independent occlusion of arterial and venous supply. Plast Reconstr Surg 61(4):576–579

    Article  CAS  PubMed  Google Scholar 

  12. Lagerwall K, Daneryd P, Schersten T, Soussi B (1995) In vivo 31P nuclear magnetic resonance evidence of the salvage effect of ascorbate on the postischemic reperfused rat skeletal muscle. Life Sci 56(6):389–397

    Article  CAS  PubMed  Google Scholar 

  13. Skjeldal S, Grogaard B, Reikeras O, Muller C, Torvik A, Svindland A (1991) Model for skeletal muscle ischemia in rat hindlimb: evaluation of reperfusion and necrosis. Eur Surg Res 23(5–6):355–365

    Article  CAS  PubMed  Google Scholar 

  14. Lindsay TF, Liauw S, Romaschin AD, Walker PM (1990) The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle. J Vasc Surg 12(1):8–15

    Article  CAS  PubMed  Google Scholar 

  15. Labbe R, Lindsay T, Walker PM (1987) The extent and distribution of skeletal muscle necrosis after graded periods of complete ischemia. J Vasc Surg 6(2):152–157

    Article  CAS  PubMed  Google Scholar 

  16. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4(5–6):559–567. doi:10.1016/j.mito.2004.07.033

    Article  CAS  PubMed  Google Scholar 

  17. Douris P, Southard V, Ferrigi R, Grauer J, Katz D, Nascimento C, Podbielski P (2006) Effect of phototherapy on delayed onset muscle soreness. Photomed Laser Surg 24(3):377–382. doi:10.1089/pho.2006.24.377

    Article  PubMed  Google Scholar 

  18. Komine N, Ikeda K, Tada K, Hashimoto N, Sugimoto N, Tomita K (2010) Activation of the extracellular signal-regulated kinase signal pathway by light emitting diode irradiation. Lasers Med Sci 25(4):531–537. doi:10.1007/s10103-009-0743-7

    Article  PubMed  Google Scholar 

  19. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771. doi:10.1074/jbc.M409650200

    Article  CAS  PubMed  Google Scholar 

  20. Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153(4):963–974. doi:10.1016/j. neuroscience.2008.03.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21(2):67–74. doi:10.1089/104454703765035484

    Article  PubMed  Google Scholar 

  22. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99. doi:10.1007/s10103-003-0262-x

    Article  PubMed  Google Scholar 

  23. Xavier M, David DR, de Souza RA, Arrieiro AN, Miranda H, Santana ET, Silva JA Jr, Salgado MA, Aimbire F, Albertini R (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med 42(6):553–558. doi:10.1002/lsm.20896

    Article  PubMed  Google Scholar 

  24. Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635-nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7):614–621. doi:10.1002/lsm.20533

    Article  PubMed  Google Scholar 

  25. Casalechi HL, Nicolau RA, Casalechi VL, Silveira L Jr, De Paula AM, Pacheco MT (2009) The effects of low-level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 24(4):659–665. doi:10.1007/s10103-008-0607-6

    Article  PubMed  Google Scholar 

  26. Karu TI, Pyatibrat LV, Kalendo GS (2001) Cell attachment modulation by radiation from a pulsed light diode (lambda0820 nm) and various chemicals. Lasers Surg Med 28(3):227–236. doi:10.1002/lsm.1043

    Article  CAS  PubMed  Google Scholar 

  27. Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120. doi:10.1007/s10103-009-0697-9

    Article  PubMed  Google Scholar 

  28. da Costa Santos VB, de Paula Ramos S, Milanez VF, Corrêa JC, de Andrade Alves RI, Dias IF, Nakamura FY (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29(2):599–605. doi:10.1007/s10103-013-1371-9

    Article  PubMed  Google Scholar 

  29. Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF, Toginho Filho Dde O, Ramos Sde P (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27(5):1051–1058. doi:10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  30. Ulrich R, Roeder G, Lorber C et al (2001) Continuous venovenous hemofiltration improves arterial oxygenation in endotoxin-induced lung injury in pigs. Anesthesiology 95(2):428

    Article  Google Scholar 

  31. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46:639

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497

    CAS  PubMed  Google Scholar 

  33. Aebi H (1974) Catalase. In: Bergmeyer U (ed) Methods of enzymatic analysis. Academic, New York, pp 673–677

    Chapter  Google Scholar 

  34. Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302

    Article  Google Scholar 

  35. Perry MO (1988) Compartment syndromes and reperfusion injury. Surg Clin N Am 68:853–864

    CAS  PubMed  Google Scholar 

  36. Quinones BWJ, Saleh S (1991) Acute arterial occlusion. In: Moore WS (ed) Vascular surgery. A comprehensive review, vol 33. Saunders, Philadelphia, pp 578–597

    Google Scholar 

  37. Morin D, Hauet T, Spedding M, Tillement J (2001) Mitochondria as target for antiischemic drugs. Adv Drug Deliv Rev 49:151–174

    Article  CAS  PubMed  Google Scholar 

  38. Barie PS, Mullins RJ (1988) Experimental methods in the pathogenesis of limb ischemia. J Surg Res 44:284–307

    Article  CAS  PubMed  Google Scholar 

  39. Swartz WM, Cha CJ, Clowes GH Jr, Randall HT (1978) The effect prolonged ischemia on high energy phosphate metabolism in skeletal muscle. Surg Ginecol Obstet 147:872–876

    CAS  Google Scholar 

  40. Yoshida WB (1996) Radicais livres na síndrome da isquemia e reperfusão. Cir Vasc e Angiol 12:82–95

    Google Scholar 

  41. Brooks B (1922) Pathologic changes in muscle as a result of disturbances of circulation: an experimental study of Volkmann’s ischemic paralysis. Arch Surg 5:188–216

    Article  Google Scholar 

  42. Jimbo K, Noda K, Suzuki K, Yoda K (1998) Suppressive effects of low-power laser irradiation on bradykinin evoked action potentials in cultured murine dorsal root ganglion cells. Neurosci Lett 240(2):93–96

    Article  CAS  PubMed  Google Scholar 

  43. Simunovic Z, Trobonjaca T, Trobonjaca Z (1998) Treatment of medial and lateral epicondylitis—tennis and golfer’s elbow—with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J Clin Laser Med Surg 16(3):145–151

    CAS  PubMed  Google Scholar 

  44. Serafim KG, Ramos SD, de Lima FM, Carandina M, Ferrari O, Dias IF, Toginho Filho DD, Siqueira CP (2011) Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci. doi:10.1007/s10103-011-0923-0

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ashrafzadeh Takhtfooladi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takhtfooladi, M.A., Shahzamani, M., Takhtfooladi, H.A. et al. Effects of light-emitting diode (LED) therapy on skeletal muscle ischemia reperfusion in rats. Lasers Med Sci 30, 311–316 (2015). https://doi.org/10.1007/s10103-014-1670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1670-9

Keywords

Navigation