Skip to main content

Advertisement

Log in

RUNX3 expression is associated with sensitivity to pheophorbide a-based photodynamic therapy in keloids

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Runt-related transcription factor 3 (RUNX3) has recently been reported to be a possible predictor of sensitivity of cancer cells for photodynamic therapy (PDT), a promising therapeutic modality for keloids. In this study, we aimed to elucidate the implications of RUNX3 for keloid pathogenesis and sensitivity to pheophorbide a-based PDT (Pa-PDT). RUNX3 and proliferating cell nuclear antigen (PCNA) expression were examined in 6 normal skin samples and 32 keloid tissue samples by immunohistochemistry. We found that RUNX3 expression was detected more often in keloid tissues than in dermis of normal skin. In keloid tissues, RUNX3 expression was significantly increased in patients presenting with symptoms of pain or pruritus, and was also significantly related to PCNA expression. The therapeutic effect of Pa-PDT was comparatively investigated in keloid fibroblasts (KFs) with and without RUNX3 expression. Significant differences were found after Pa-PDT between KFs with and without RUNX3 expression in cell viability, proliferative ability, type I collagen expression, generation of reactive oxygen species (ROS), and apoptotic cell death. In addition, RUNX3 expression was significantly decreased after Pa-PDT in KFs, and KFs with downregulation of RUNX3 showed significantly increased cell viability after Pa-PDT. Pa-PDT may be a potential therapeutic modality for keloids, and RUNX3, as a possible contributor to keloid pathogenesis, may improve sensitivity to Pa-PDT in KFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100(Suppl 2):75–83

    Article  PubMed  Google Scholar 

  2. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302(5):319–339

    Article  CAS  PubMed  Google Scholar 

  3. Calderon M, Lawrence WT, Banes AJ (1996) Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res 61(2):343–347

    Article  CAS  PubMed  Google Scholar 

  4. Blazic TM, Brajac I (2006) Defective induction of senescence during wound healing is a possible mechanism of keloid formation. Med Hypotheses 66(3):649–652

    Article  CAS  PubMed  Google Scholar 

  5. Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297(10):433–438

    Article  PubMed  Google Scholar 

  6. Shaffer JJ, Taylor SC, Cook-Bolden F (2002) Keloidal scars: a review with a critical look at therapeutic options. J Am Acad Dermatol 46(2 Suppl Understanding):S63–S97

    Article  PubMed  Google Scholar 

  7. Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104(5):1435–1458

    Article  CAS  PubMed  Google Scholar 

  8. Kelly AP (2004) Medical and surgical therapies for keloids. Dermatol Ther 17(2):212–218

    Article  PubMed  Google Scholar 

  9. Mall JW, Pollmann C, Muller JM, Buttemeyer R (2002) Keloid of the earlobe after ear piercing. Not only a surgical problem. Chirurg 73(5):514–516

    Article  CAS  PubMed  Google Scholar 

  10. Durani P, Bayat A (2008) Levels of evidence for the treatment of keloid disease. J Plast Reconstr Aesthet Surg 61(1):4–17

    Article  CAS  PubMed  Google Scholar 

  11. Christensen E, Warloe T, Kroon S, Funk J, Helsing P, Soler AM et al (2010) Guidelines for practical use of MAL-PDT in non-melanoma skin cancer. J Eur Acad Dermatol Venereol 24(5):505–512

    Article  CAS  PubMed  Google Scholar 

  12. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  13. Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol 16(6):393–396

    PubMed  Google Scholar 

  14. Vrouenraets MB, Visser GW, Snow GB, van Dongen GA (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23(1B):505–522

    CAS  PubMed  Google Scholar 

  15. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508

    Article  CAS  PubMed  Google Scholar 

  16. Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ (2000) Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res 60(6):1637–1644

    CAS  PubMed  Google Scholar 

  17. Lim DS, Ko SH, Lee WY (2004) Silkworm-pheophorbide alpha mediated photodynamic therapy against B16F10 pigmented melanoma. J Photochem Photobiol, B 74(1):1–6

    Article  CAS  Google Scholar 

  18. Tang PM, Liu XZ, Zhang DM, Fong WP, Fung KP (2009) Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther 8(6):533–539

    Article  CAS  PubMed  Google Scholar 

  19. Hoi SW, Wong HM, Chan JY, Yue GG, Tse GM, Law BK et al (2012) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res 26(5):734–742

    Article  CAS  PubMed  Google Scholar 

  20. Tang PM, Chan JY, Au SW, Kong SK, Tsui SK, Waye MM et al (2006) Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther 5(9):1111–1116

    Article  CAS  PubMed  Google Scholar 

  21. Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M et al (2002) In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75(2):140–148

    Article  CAS  PubMed  Google Scholar 

  22. Lee WY, Lim DS, Ko SH, Park YJ, Ryu KS, Ahn MY et al (2004) Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol, B 75(3):119–126

    Article  CAS  Google Scholar 

  23. Moon S, Bae JY, Son HK, Lee DY, Park G, You H et al (2013) RUNX3 confers sensitivity to pheophorbide a-photodynamic therapy in human oral squamous cell carcinoma cell lines. Lasers Med Sci. doi:10.1007/s10103-013-1350-1

    Google Scholar 

  24. Ito K (2011) RUNX3 in oncogenic and anti-oncogenic signaling in gastrointestinal cancers. J Cell Biochem 112(5):1243–1249

    Article  CAS  PubMed  Google Scholar 

  25. Lee CW, Chuang LS, Kimura S, Lai SK, Ong CW, Yan B et al (2011) RUNX3 functions as an oncogene in ovarian cancer. Gynecol Oncol 122(2):410–417

    Article  CAS  PubMed  Google Scholar 

  26. Kudo Y, Tsunematsu T, Takata T (2011) Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 112(2):387–393

    Article  CAS  PubMed  Google Scholar 

  27. Iqbal SA, Syed F, McGrouther DA, Paus R, Bayat A (2010) Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid: do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells? Br J Dermatol 162(6):1377–1383

    Article  CAS  PubMed  Google Scholar 

  28. Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18(11):921–933

    Article  CAS  PubMed  Google Scholar 

  29. Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128(3):702–709

    Article  CAS  PubMed  Google Scholar 

  30. Zhang G, Jiang JJ, Luo SJ, Tang SM, Liang J, Yu Q (2008) The relationship between RUNX3 gene mutation and keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 24(3):224–227

    PubMed  Google Scholar 

  31. Luo X, Pan Q, Liu L, Chegini N (2007) Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol 5:35

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ahn MY, Kwon SM, Kim YC, Ahn SG, Yoon JH (2012) Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo. Oncol Rep 27(6):1772–1778

    CAS  PubMed  Google Scholar 

  33. Lim SH, Lee HB, Ho AS (2011) A new naturally derived photosensitizer and its phototoxicity on head and neck cancer cells. Photochem Photobiol 87(5):1152–1158

    Article  CAS  PubMed  Google Scholar 

  34. Mendoza J, Sebastian A, Allan E, Allan D, Mandal P, Alonso-Rasgado T et al (2012) Differential cytotoxic response in keloid fibroblasts exposed to photodynamic therapy is dependent on photosensitiser precursor, fluence and location of fibroblasts within the lesion. Arch Dermatol Res 304(7):549–562

    Article  CAS  PubMed  Google Scholar 

  35. Chiu LL, Sun CH, Yeh AT, Torkian B, Karamzadeh A, Tromberg B et al (2005) Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture. Lasers Surg Med 37(3):231–244

    Article  PubMed  Google Scholar 

  36. Nie Z, Bayat A, Behzad F, Rhodes LE (2010) Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed 26(6):330–332

    Article  PubMed  Google Scholar 

  37. Hsieh YJ, Wu CC, Chang CJ, Yu JS (2003) Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 194(3):363–375

    Article  CAS  PubMed  Google Scholar 

  38. Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704(2):59–86

    CAS  PubMed  Google Scholar 

  39. Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al (2006) RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25(58):7646–7649

    Article  CAS  PubMed  Google Scholar 

  40. Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H et al (2009) RUNX3 has an oncogenic role in head and neck cancer. PLoS One 4(6):e5892

    Article  PubMed Central  PubMed  Google Scholar 

  41. Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS et al (2009) RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112(2):325–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (NSFC, no. 81260233), and a faculty research grant from Yonsei University College of Medicine for 2012 (6-2012-0180).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Ryung Roh or Zhehu Jin.

Additional information

Zhenlong Zheng and Lianhua Zhu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zhu, L., Zhang, X. et al. RUNX3 expression is associated with sensitivity to pheophorbide a-based photodynamic therapy in keloids. Lasers Med Sci 30, 67–75 (2015). https://doi.org/10.1007/s10103-014-1614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1614-4

Keywords

Navigation