Skip to main content

Advertisement

Log in

Thermal effects and morphological aspects of varying Er:YAG laser energy on demineralized dentin removal: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate thermal changes, dentin ablation removal capacity, and morphological aspects of sound and demineralized human dentin surface irradiated with different output energies of an erbium: yttrium-aluminium-garnet (Er:YAG) laser. Eighty sound human tooth specimens were assigned into two groups: demineralized dentin and sound dentin (control group). The dentin groups were subdivided into four subgroups (n = 10) according to the irradiation energy used (120, 160, 200, or 250 mJ) at a constant frequency level of 6 Hz, in focused mode, and under refrigeration. Quantitative analysis of the sound and carious dentin ablation was performed using light microscopy (LM) by measuring (mm) the remaining demineralized tissue with the Axion Vision™ software. Qualitative analysis was performed using the images obtained with a scanning electron microscope (SEM), and the temperature increase was recorded with an infrared digital thermometer. The Er:YAG laser promoted a gradual increase in temperature for all groups, and no difference was observed between the sound and demineralized dentin. The groups of 200 and 250 mJ showed the highest values, yet a variation in temperature did not exceed 5 °C. The energy output of 120 mJ selectively removed demineralized tissue when compared to 250 mJ, while also providing more regular surfaces in the cavity preparation. It was concluded that the temperature increase during sound and demineralized dentin removal had a strong positive correlation with the Er:YAG laser energy level output. However, the higher energies used did not present selectivity to the demineralized tissue, and the parameters used did not cause an increase in temperature over 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takamori K, Furukawa H, Morikawa Y, Katayama T, Watanabe S (2003) Basic study on vibrations during tooth preparations caused by high-speed drilling and ER:YAG laser irradiation. Lasers Surg Med 32:25–31

    Article  PubMed  Google Scholar 

  2. Bohari MR, Chunawalla YK, Ahmed BM (2012) Clinical evaluation of caries removal in primary teeth using conventional, chemomechanical and laser technique: an in vivo study. J Contemp Dent Pract 13:40–47

    Article  PubMed  Google Scholar 

  3. Celiberti P, Francescut P, Lussi A (2006) Performance of four dentine excavation methods in deciduous teeth. Caries Res 40:117–123

    Article  CAS  PubMed  Google Scholar 

  4. Jepsen S, Açil Y, Peschel T, Kargas K, Eberhard J (2008) Biomechanical and morphological analysis of dentin following selective caries removal with a fluorescence-controlled ER:YAG laser. Lasers Surg Med 40:350–357

    Article  PubMed  Google Scholar 

  5. Sattabanasuk V, Burrow MF, Shimada Y, Tagami J (2006) Resin adhesion to caries-affected dentine after different removal methods. Aust Dent J 51:162–169

    Article  CAS  PubMed  Google Scholar 

  6. Tachibana A, Marques MM, Soler JM, Matos AB (2008) Erbium, chromium: yttrium scandium gallium garnet laser for caries removal: influence on bonding of a self-etching adhesive system. Lasers Med Sci 23:435–441

    Article  PubMed  Google Scholar 

  7. Bornstein ES (2003) Why wavelength and delivery systems are the most important factors in using a dental hard-tissue laser: a literature review. Compend Contin Educ Dent 24:837–838

    PubMed  Google Scholar 

  8. Gimbel CB (2000) Hard tissue laser procedures. Dent Clin North Am 44:931–953

    CAS  PubMed  Google Scholar 

  9. Paghdiwala AF, Vaidyanathan TK, Paghdiwala MF (1993) Evaluation of erbium:YAG laser radiation of hard dental tissues: analysis of temperature changes, depth of cuts and structural effects. Scanning Microsc 7:989–997

    CAS  PubMed  Google Scholar 

  10. Armengol V, Jean A, Marion D (2000) Temperature rise during Er:YAG and Nd:YAG laser ablation of dentin. J Endod 26:138–141

    Article  CAS  PubMed  Google Scholar 

  11. Geraldo-Martins VR, Tanji EY, Wetter NU, Nogueira RD, Eduardo CP (2005) Intrapulpal temperature during preparation with the Er:YAG laser: an in vitro study. Photomed Laser Surg 23:182–186

    Article  PubMed  Google Scholar 

  12. Raucci-Neto W, De Castro LM, Correa-Afonso AM, Da Silva RS, Pecora JD, Palma-Dibb RG (2007) Assessment of thermal alteration during class V cavity preparation using the Er:YAG laser. Photomed Laser Surg 25:281–286

    Article  PubMed  Google Scholar 

  13. Firoozmand L, Faria R, Araujo MA, Di Nicoló R, Huthala MF (2008) Temperature rise in cavities prepared by high and low torque handpieces and Er: YAG laser. Br Dent J 12(205):E1. doi:10.1038/sj.bdj.2008.491, discussion 28-9

    Article  Google Scholar 

  14. Kuboki Y, Ohgushi K, Fusayama T (1977) Collagen biochemistry of the two layers of carious dentin. J Dent Res 56:1233–1237

    Article  CAS  PubMed  Google Scholar 

  15. Raucci-Neto W, Pécora JD, Palma-Dibb RG (2012) Thermal effects and morphological aspects of human dentin surface irradiated with different frequencies of Er:YAG laser. Microsc Res Tech 75:1370–1375

    Article  CAS  PubMed  Google Scholar 

  16. Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS (2004) Thermal effects of the ER:YAG laser on simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent 32:35–40

    Article  CAS  PubMed  Google Scholar 

  17. Raucci-Neto W, Chinelatti MA, Ito IY, Pécora JD, Palma-Dibb RG (2010) Influence of ER:YAG laser frequency on dentin caries removal capacity. Micros Res Tech 74:281–286

    Article  Google Scholar 

  18. Chinelatti MA, Raucci-Neto W, Corona SA, Palma-Dibb RG (2010) Effect of erbium:yttrium-aluminum-garnet laser energies on superficial and deep dentin microhardness. Lasers Med Sci 25:317–24

    Article  PubMed  Google Scholar 

  19. Featherstone JDB, O’Reilly MM, Shariati M, Brugler S (1986) Enhancement of remineralization in vitro and in vivo. In: Leach SA (ed) Factors relating to demineralization and remineralization of the teeth. IRL, Oxford, pp 23–4

    Google Scholar 

  20. Serra MC, Cury JA (1992) The in vitro effect of glass-ionomer demineralization and remineralization model. Quintessence Int 23:143–147

    CAS  PubMed  Google Scholar 

  21. ten Cate JM, Djuisters PPE (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210

    Article  PubMed  Google Scholar 

  22. Hossain M, Nakamura Y, Kimura Y, Nakamura G, Matsumoto K (1999) Ablation depths and morphological changes in human enamel and dentin after Er:YAG laser irradiation with or without water mist. J Clin Laser Med Surg 17:105–109

    CAS  PubMed  Google Scholar 

  23. Kim ME, Jeoung DJ, Kim KS (2003) Effects of water flow on dental hard tissue ablation using Er:YAG laser. J Clin Laser Med Surg 21:139–144

    Article  PubMed  Google Scholar 

  24. Contente MM, de Lima FA, Galo R, Pécora JD, Bachmann L, Palma-Dibb RG, Borsatto MC (2012) Temperature rise during Er:YAG cavity preparation of primary enamel. Lasers Med Sci 27(1):1–5. doi:10.1007/s10103-010-0823-8

    Article  PubMed  Google Scholar 

  25. Hubbezoglu I, Unal M, Zan R, Hurmuzlu F (2013) Temperature rises during application of Er:YAG laser under different primary dentin thicknesses. Photomed Laser Surg 31:201–205. doi:10.1089/pho.2012.3411

    Article  CAS  PubMed  Google Scholar 

  26. Igarashi A, Kato J, Takase Y, Hirai Y (2008) Influence of output energy and pulse repetition rate of the Er:YAG laser on dentin ablation. Photomed Laser Surg 26:189–195

    Article  PubMed  Google Scholar 

  27. Dostálová T, Jelínková H, Kucerová H, Krejsa O, Hamal K, Kubelka J, Procházka S (1998) Noncontact Er:YAG laser ablation: clinical evaluation. J Clin Laser Med Surg 16:273–82

    PubMed  Google Scholar 

  28. Monghini EM, Wanderley RL, Pécora JD, Palma Dibb RG, Corona SA, Borsatto MC (2004) Bond strength to dentin of primary teeth irradiated with varying Er:YAG laser energies and SEM examination of the surface morphology. Lasers Surg Med 34:254–259

    Article  PubMed  Google Scholar 

  29. Baraba A, Dukić W, Chieffi N, Ferrari M, Anić I, Miletić I (2013) Influence of different pulse durations of Er:YAG laser based on variable square pulse technology on microtensile bond strength of a self-etch adhesive to dentin. Photomed Laser Surg 31:116–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq and FAPESP (Process number 2011/07960-4 and 2012/02460-6) for financial support. The authors also would like to thank Dr. Jeremy Matis for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Guenka Palma-Dibb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raucci-Neto, W., Raquel dos Santos, C., Augusto de Lima, F. et al. Thermal effects and morphological aspects of varying Er:YAG laser energy on demineralized dentin removal: an in vitro study. Lasers Med Sci 30, 1231–1236 (2015). https://doi.org/10.1007/s10103-014-1579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1579-3

Keywords

Navigation