Skip to main content

Advertisement

Log in

Reliability evaluation of alumina-blasted/acid-etched versus laser-sintered dental implants

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Step-stress accelerated life testing (SSALT) and fractographic analysis were performed to evaluate the reliability and failure modes of dental implant fabricated by machining (surface treated with alumina blasting/acid etching) or laser sintering for anterior single-unit replacements. Forty-two dental implants (3.75 × 10 mm) were divided in two groups (n = 21 each): laser sintered (LS) and alumina blasting/acid etching (AB/AE). The abutments were screwed to the implants and standardized maxillary central incisor metallic crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Polarized light and scanning electron microscopes were used for failure analyses. The Beta (β) value derived from use-level probability Weibull calculation of 1.48 for group AB/AE indicated that damage accumulation likely was an accelerating factor, whereas the β of 0.78 for group LS indicated that load alone likely dictated the failure mechanism for this group, and that fatigue damage did not appear to accumulate. The reliability was not significantly different (p > 0.9) between AB/AE (61 %) and LS (62 %). Fracture of the abutment and fixation screw was the chief failure mode. No implant fractures were observed. No differences in reliability and fracture mode were observed between LS and AB/AE implants used for anterior single-unit crowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R (2009) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res A 88(3):823–831. doi:10.1002/jbm.a.32033

    PubMed  Google Scholar 

  2. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533. doi:10.1016/j.dental.2008.03.029

    Article  PubMed  CAS  Google Scholar 

  3. Mangano C, Mangano F, Shibli JA, Luongo G, De Franco M, Briguglio F, Figliuzzi M, Eccellente T, Rapani C, Piombino M, Macchi A (2011) Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study. Lasers Med Sci. doi:10.1007/s10103-011-0904-3

  4. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19(2):247–259

    PubMed  Google Scholar 

  5. Khayat PG, Milliez SN (2007) Prospective clinical evaluation of 835 multithreaded tapered screw-vent implants: results after two years of functional loading. Journal Oral Implantol 33(4):225–231. doi:10.1563/1548-1336(2007)33[225:PCEOMT]2.0.CO;2

    Article  Google Scholar 

  6. Astrand P, Engquist B, Dahlgren S, Grondahl K, Engquist E, Feldmann H (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bone reactions. Clin Oral Implants Res 15(4):413–420. doi:10.1111/j.1600-0501.2004.01028.x

    Article  PubMed  Google Scholar 

  7. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE (2009) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88(2):579–596. doi:10.1002/jbm.b.31264

    PubMed  Google Scholar 

  8. Mangano C, Piattelli A, Raspanti M, Mangano F, Cassoni A, Iezzi G, Shibli JA (2011) Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series. Lasers Med Sci 26(1):133–138. doi:10.1007/s10103-010-0831-8

    Article  PubMed  Google Scholar 

  9. Frenkel SR, Simon J, Alexander H, Dennis M, Ricci JL (2002) Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment. J Biomed Mater Res 63(6):706–713. doi:10.1002/jbm.10408

    Article  PubMed  CAS  Google Scholar 

  10. Soboyejo WO, Nemetski B, Allameh S, Marcantonio N, Mercer C, Ricci J (2002) Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res 62(1):56–72. doi:10.1002/jbm.10221

    Article  PubMed  CAS  Google Scholar 

  11. Oyonarte R, Pilliar RM, Deporter D, Woodside DG (2005) Peri-implant bone response to orthodontic loading: Part 1. A histomorphometric study of the effects of implant surface design. Am J Orthod Dentofacial Orthop 128(2):173–181. doi:10.1016/j.ajodo.2004.02.023

    Article  PubMed  Google Scholar 

  12. Pilliar RM, Sagals G, Meguid SA, Oyonarte R, Deporter DA (2006) Threaded versus porous-surfaced implants as anchorage units for orthodontic treatment: three-dimensional finite element analysis of peri-implant bone tissue stresses. Int J Oral Maxillofac Implants 21(6):879–889

    PubMed  Google Scholar 

  13. Palmquist A, Emanuelsson L, Branemark R, Thomsen P (2011) Biomechanical, histological and ultrastructural analyses of laser micro- and nano-structured titanium implant after 6 months in rabbit. J Biomed Mater Res B Appl Biomater 97(2):289–298. doi:10.1002/jbm.b.31814

    PubMed  Google Scholar 

  14. Witek L, Marin C, Granato R, Bonfante EA, Campos F, Bisinotto J, Suzuki M, Coelho PG (2012) Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.32725

  15. Al-Omari WM, Shadid R, Abu-Naba’a L, El Masoud B (2010) Porcelain fracture resistance of screw-retained, cement-retained, and screw-cement-retained implant-supported metal ceramic posterior crowns. J Prosthodont 19(4):263–273. doi:10.1111/j.1532-849X.2009.00560.x

    Article  PubMed  Google Scholar 

  16. Dittmer MP, Dittmer S, Borchers L, Kohorst P, Stiesch M (2011) Influence of the interface design on the yield force of the implant–abutment complex before and after cyclic mechanical loading. J Prosthodont Res. doi:10.1016/j.jpor.2011.02.002

  17. Kohal RJ, Wolkewitz M, Tsakona A (2011) The effects of cyclic loading and preparation on the fracture strength of zirconium-dioxide implants: an in vitro investigation. Clin Oral Implants Res 22(8):808–814. doi:10.1111/j.1600-0501.2010.02067.x

    Article  PubMed  Google Scholar 

  18. Ribeiro CG, Maia ML, Scherrer SS, Cardoso AC, Wiskott HW (2011) Resistance of three implant-abutment interfaces to fatigue testing. J Appl Oral Sci 19:413–420

    Google Scholar 

  19. Freitas AC Jr, Bonfante EA, Rocha EP, Silva NR, Marotta L, Coelho PG (2011) Effect of implant connection and restoration design (screwed vs. cemented) in reliability and failure modes of anterior crowns. Eur J Oral Sci 119(4):323–330. doi:10.1111/j.1600-0722.2011.00837.x

    Article  PubMed  CAS  Google Scholar 

  20. Karl M, Kelly JR (2009) Influence of loading frequency on implant failure under cyclic fatigue conditions. Dent Mater 25(11):1426–1432. doi:10.1016/j.dental.2009.06.015

    Article  PubMed  CAS  Google Scholar 

  21. Lee CK, Karl M, Kelly JR (2009) Evaluation of test protocol variables for dental implant fatigue research. Dent Mater 25(11):1419–1425. doi:10.1016/j.dental.2009.07.003

    Article  PubMed  CAS  Google Scholar 

  22. Coelho PG, Bonfante EA, Silva NR, Rekow ED, Thompson VP (2009) Laboratory simulation of Y-TZP all-ceramic crown clinical failures. J Dent Res 88(4):382–386. doi:10.1177/0022034509333968

    Article  PubMed  CAS  Google Scholar 

  23. Silva NR, Bonfante EA, Zavanelli RA, Thompson VP, Ferencz JL, Coelho PG (2010) Reliability of metalloceramic and zirconia-based ceramic crowns. J Dent Res 89(10):1051–1056. doi:10.1177/0022034510375826

    Article  PubMed  CAS  Google Scholar 

  24. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP (2010) Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 23(5):434–442

    PubMed  Google Scholar 

  25. Bonfante EA, Coelho PG, Navarro JM Jr, Pegoraro LF, Bonfante G, Thompson VP, Silva NR (2010) Reliability and failure modes of implant-supported Y-TZP and MCR three-unit bridges. Clin Implant Dent Relat Res 12(3):235–243. doi:10.1111/j.1708-8208.2009.00156.x

    PubMed  Google Scholar 

  26. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP (2009) Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater 25(9):1122–1127. doi:10.1016/j.dental.2009.03.009

    Article  PubMed  CAS  Google Scholar 

  27. Abernethy R (2006) The new Weibull handbook, 5th edn. Dr. Robert B. Abernethy, North Palm Beach

    Google Scholar 

  28. Zhao WE (2005) A general accelerated life model for step-stress testing. IEEE Trans Reliabil 37:1059–1069

    Google Scholar 

  29. Reliasoft (2010) The Weibull Distribution and Beta. http://www.weibull.com/hotwire/issue110/hottopics110.htm

  30. Nelson W (1990) Accelerated testing: statistical models, test plans and data analysis. Wiley, New York

    Google Scholar 

  31. Nelson W (2004) Accelerated testing: statistical models, test plans and data analysis. Wiley, New York

    Google Scholar 

  32. Hellsing G (1980) On the regulation of interincisor bite force in man. J Oral Rehabil 7(5):403–411

    Article  PubMed  CAS  Google Scholar 

  33. Manda MG, Psyllaki PP, Tsipas DN, Koidis PT (2009) Observations on an in-vivo failure of a titanium dental implant/abutment screw system: a case report. J Biomed Mater Res B Appl Biomater 89(1):264–273. doi:10.1002/jbm.b.31211

    PubMed  Google Scholar 

  34. Parrington R (2002) Fractography of metals and plastics In: Park M (ed) Practical Failure Analysis. ASM International. 2(5):16–22

  35. Rong M, Zhou L, Gou Z, Zhu A, Zhou D (2009) The early osseointegration of the laser-treated and acid-etched dental implants surface: an experimental study in rabbits. J Mater Sci Mater Med 20(8):1721–1728. doi:10.1007/s10856-009-3730-4

    Article  PubMed  CAS  Google Scholar 

  36. Cho SA, Jung SK (2003) A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 24(26):4859–4863

    Article  PubMed  CAS  Google Scholar 

  37. Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr (2009) Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxillofac Surg 67(8):1706–1715. doi:10.1016/j.joms.2009.03.046

    Article  PubMed  Google Scholar 

  38. Silva NR, de Souza GM, Coelho PG, Stappert CF, Clark EA, Rekow ED, Thompson VP (2008) Effect of water storage time and composite cement thickness on fatigue of a glass–ceramic trilayer system. J Biomed Mater Res B Appl Biomater 84(1):117–123. doi:10.1002/jbm.b.30851

    PubMed  Google Scholar 

  39. Zarb GA, Schmitt A (1990) The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: problems and complications encountered. J Prosthet Dent 64(2):185–194

    Article  PubMed  CAS  Google Scholar 

  40. Naert I, Quirynen M, van Steenberghe D, Darius P (1992) A study of 589 consecutive implants supporting complete fixed prostheses. Part II: prosthetic aspects. J Prosthet Dent 68(6):949–956

    Article  PubMed  CAS  Google Scholar 

  41. Pylant T, Triplett RG, Key MC, Brunsvold MA (1992) A retrospective evaluation of endosseous titanium implants in the partially edentulous patient. Int J Oral Maxillofac Implants 7(2):195–202

    PubMed  CAS  Google Scholar 

  42. Gunne J, Jemt T, Linden B (1994) Implant treatment in partially edentulous patients: a report on prostheses after 3 years. Int J Prosthodont 7(2):143–148

    PubMed  CAS  Google Scholar 

  43. Lekholm U, Gunne J, Henry P, Higuchi K, Linden U, Bergstrom C, van Steenberghe D (1999) Survival of the Branemark implant in partially edentulous jaws: a 10-year prospective multicenter study. Int J Oral Maxillofac Implants 14(5):639–645

    PubMed  CAS  Google Scholar 

  44. Henry PJ, Laney WR, Jemt T, Harris D, Krogh PH, Polizzi G, Zarb GA, Herrmann I (1996) Osseointegrated implants for single-tooth replacement: a prospective 5-year multicenter study. Int J Oral Maxillofac Implants 11(4):450–455

    PubMed  CAS  Google Scholar 

  45. Adell R, Lekholm U, Rockler B, Branemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10(6):387–416

    Article  PubMed  CAS  Google Scholar 

  46. Goodacre CJ, Kan JY, Rungcharassaeng K (1999) Clinical complications of osseointegrated implants. J Prosthet Dent 81(5):537–552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to A.B. Dental Devices Ltd. (Ashdod, Israel) and Marotta Dental Studio (Farmingdale, NY, USA) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estevam A. Bonfante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, E.O., Júnior, A.C.F., Bonfante, E.A. et al. Reliability evaluation of alumina-blasted/acid-etched versus laser-sintered dental implants. Lasers Med Sci 28, 851–858 (2013). https://doi.org/10.1007/s10103-012-1170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1170-8

Keywords

Navigation