Skip to main content
Log in

Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

It has been demonstrated that reactive oxygen species (ROS) formation and oxidative damage markers are increased after muscle damage. Recent studies have demonstrated that low-level laser therapy (LLLT) modulates many biochemical processes mainly those related to reduction of muscular injures, increment of mitochondrial respiration and ATP synthesis, as well as acceleration of the healing process. The objective of the present investigation was to verify the influence of LLLT in some parameters of muscular injury, oxidative damage, antioxidant activity, and synthesis of collagen after traumatic muscular injury. Adult male Wistar rats were divided randomly into three groups (n = 6), namely, sham (uninjured muscle), muscle injury without treatment, and muscle injury with LLLT (GaAs, 904 nm). Each treated point received 5 J/cm2 or 0.5 J of energy density (12.5 s) and 2.5 J per treatment (five regions). LLLT was administered 2, 12, 24, 48, 72, 96, and 120 h after muscle trauma. The serum creatine kinase activity was used as an index of skeletal muscle injury. Superoxide anion, thiobarbituric acid reactive substance (TBARS) measurement, and superoxide dismutase (SOD) activity were used as indicators of oxidative stress. In order to assess the synthesis of collagen, levels of hydroxyproline were measured. Our results have shown that the model of traumatic injury induces a significant increase in serum creatine kinase activity, hydroxyproline content, superoxide anion production, TBARS level, and activity of SOD compared to control. LLLT accelerated the muscular healing by significantly decreasing superoxide anion production, TBARS levels, the activity of SOD, and hydroxyproline content. The data strongly indicate that increased ROS production and augmented collagen synthesis are elicited by traumatic muscular injury, effects that were significantly decreased by LLLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beiner JM, Jokl P (1997) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27:2–9

    Google Scholar 

  2. Freitas TP, Gomes M, Fraga DB (2010) Effect of therapeutic pulsed ultrasound on lipoperoxidation and fibrogenesis in an animal model of wound healing. J Surg Res 161:168–171

    Article  PubMed  CAS  Google Scholar 

  3. Pattwell DM, Jackson MJ (2004) Contraction-induced oxidants as mediators of adaptation and damage in skeletal muscle. Exerc Sport Sci Rev 32:14–18

    Article  PubMed  Google Scholar 

  4. Elmali N, Esenkaya I, Karadag N et al (2007) Effects of resveratrol on skeletal muscle in ischemia-reperfusion injury. Ulus Travma Acil Cerrahi Derg 13:274–280

    PubMed  Google Scholar 

  5. Schaser KD, Bail HJ, Schewior L (2005) Acute effects of N-acetylcysteine on skeletal muscle microcirculation following closed soft tissue trauma in rats. J Orthop Res 23:231–241

    Article  PubMed  CAS  Google Scholar 

  6. Bar-Shai M, Carmeli E, Ljubuncic P et al (2008) Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-κB activation. Free Radic Biol Med 44:202–214

    Article  PubMed  CAS  Google Scholar 

  7. Halliwell B, Gutteridge JMC (2007) Free radical in biology medicine. Oxford University Press, New York

    Google Scholar 

  8. Ozyurt B, Iraz M, Koca K et al (2006) Protective effects of caffeic acid phenethyl ester on skeletal muscle ischemia-reperfusion injury in rats. Mol Cell Biochem 292:197–203

    Article  PubMed  CAS  Google Scholar 

  9. Shefer G, Barash I (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139

    Article  PubMed  CAS  Google Scholar 

  10. Baptista J, Martins DM, Pavesi VCS (2011) Influence of laser photobiomodulation on collagen IV during skeletal muscle tissue remodeling after injury in rats. Photomed Laser Surg 29:11–17

    Article  PubMed  CAS  Google Scholar 

  11. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4–20

    Article  PubMed  Google Scholar 

  12. Lakyova L, Toporcer T, Tomeckova V (2010) Low-level laser therapy for protection against skeletal muscle damage after ischemia–reperfusion injury in rat hindlimbs. Lasers Surg Med 42:665–672

    Article  PubMed  Google Scholar 

  13. Demir H, Yaray S (2004) Comparison of the effects of laser and ultrasound treatments on experimental wound healing in rats. J Rehabil Res Dev 41:721–728

    Article  PubMed  Google Scholar 

  14. Medrado A, Pugliese LS, Reis SR et al (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244

    Article  PubMed  Google Scholar 

  15. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol 49:1–17

    CAS  Google Scholar 

  16. Gulsoy M, Dereli Z (2006) Closure of skin incisions by 980-nm diode laser welding. Lasers Med Sci 21:5–10

    Article  PubMed  Google Scholar 

  17. Rizzi CF, Mauriz JL, Corrêa DSF et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713

    Article  PubMed  Google Scholar 

  18. Lopes-Martins RA, Marcos RL, Leonardo OS et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288

    Article  PubMed  Google Scholar 

  19. Douris P, Southard V, Ferrigi R et al (2006) Effect of phototherapy on delayed onset muscle soreness. Photomed Laser Surg 24:377–382

    Article  PubMed  Google Scholar 

  20. Kelencz CA, Muñoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminum-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Surg 28:647–652

    Article  PubMed  CAS  Google Scholar 

  21. de Almeida P, Lopes-Martins RÁ, Tomazoni SS (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163

    Article  PubMed  Google Scholar 

  22. Dias FJ, Issa JP, Vicentini FT et al (2011) Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg 29:677–684

    Article  PubMed  CAS  Google Scholar 

  23. Silveira PCL, Silva LA, Fraga DB et al (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. Photochem Photobiol 95:89–92

    Article  CAS  Google Scholar 

  24. Silveira PCL, Silva LA, Tuon T et al (2009) Effects of low-level laser therapy on epidermal oxidative response induced by wound healing. Rev Bras Fisioter 13:281–287

    Article  Google Scholar 

  25. Morrone G, Guzzardella GA, Orienti L et al (1998) Muscular trauma treated with a Ga-Al-As diode laser: in vivo experimental study. Lasers Med Sci 13:293–298

    Article  Google Scholar 

  26. Freitas LS, Freitas TP, Silveira PC et al (2007) Effect of therapeutic pulsed ultrasound on parameters of oxidative stress in skeletal muscle after injury. Cell Biol Int 31:482–488

    Article  PubMed  CAS  Google Scholar 

  27. Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116–122

    PubMed  CAS  Google Scholar 

  28. Rosalki SB (1967) An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med 69:696–705

    PubMed  CAS  Google Scholar 

  29. Menegali BT, Nesi RT, Souza PS et al (2009) The effects of physical exercise on the cigarette smoke-induced pulmonary oxidative response. Pulm Pharmacol Ther 22:567–573

    Article  PubMed  CAS  Google Scholar 

  30. Poderoso JJ, Carreras MC, Cl L et al (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondrial and submitochondrial particles. Arch Biochem Biophes 328:85–92

    Article  CAS  Google Scholar 

  31. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  32. Mccord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  33. Lowry OH, Rosebough NG, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  34. Amaral AC, Parizotto NA, Salvini TF et al (2001) Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice. Lasers Med Sci 16:44–51

    Article  PubMed  CAS  Google Scholar 

  35. Carvalho PTC, Mazzer NRFA et al (2006) Analysis of the influence of low-power HeNe laser on the healing of skin wounds in diabetic and non-diabetic rats. Acta Cir Bras 21:177–183

    PubMed  Google Scholar 

  36. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21

    Article  PubMed  CAS  Google Scholar 

  37. Fillipin LI, Mauriz JL (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized achilles tendon. Lasers Surg Med 37:293–300

    Article  PubMed  Google Scholar 

  38. Kerkweg U, Petrat F, Korth HG et al (2007) Disruption of skeletal myocytes initiates superoxide release: contribution of NAD(P)H oxidase. Shock 27:552–558

    Article  PubMed  CAS  Google Scholar 

  39. Supinski GS, Callahan LA (2007) Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol 102:2056–2063

    Article  PubMed  CAS  Google Scholar 

  40. Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome C oxidase. Photochem Photobiol Sci 3:211–216

    Article  PubMed  CAS  Google Scholar 

  41. Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:323–328

    Article  PubMed  CAS  Google Scholar 

  42. Karu T (2010) Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg 28:159–160

    Article  PubMed  CAS  Google Scholar 

  43. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. SPIE 6140:01–12

    Google Scholar 

  44. Karu L, Pyatibrat G, Kalendo T (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223

    Article  PubMed  CAS  Google Scholar 

  45. Yu W, Naim JO, Mcgowan M et al (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871

    Article  PubMed  CAS  Google Scholar 

  46. Karu T (1987) Photobiological fundamentals of low-power laser therapy. J Quantum Electron 23:1703–1717

    Article  Google Scholar 

  47. Ghamsari SM, Taguchi K, Abe N et al (1997) Evaluation of low level laser therapy on primary healing of experimentally induced full thickness teat wounds in dairy cattle. Vet Surg 26:114–120

    Article  PubMed  CAS  Google Scholar 

  48. Yamaya M, Shiroto C, Kobayashi H et al (1993) Mechanistic approach to GaAIAs diode laser effects on production of reactive oxygen species from human neutrophils as a model for therapeutic modality at cellular level. Laser Ther 5:111–116

    Article  Google Scholar 

  49. Avni D, Levkovitz S, Maltz L et al (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277

    Article  PubMed  CAS  Google Scholar 

  50. Kim YG, Pak SC, Lee SR et al (2000) Hairless mouse epidermal antioxidants and lipid peroxidation assessed by He-Ne laser. Lasers Surg Med 27:420–426

    Article  PubMed  CAS  Google Scholar 

  51. Dourado DM, Fávero S, Matias R et al (2011) Low-level laser therapy promotes vascular endothelial growth factor receptor-1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochem Photobiol 87:418–426

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Cesar Lock Silveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, P.C.L., da Silva, L.A., Pinho, C.A. et al. Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 28, 431–436 (2013). https://doi.org/10.1007/s10103-012-1075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1075-6

Keywords

Navigation