Skip to main content

Advertisement

Log in

Infrared low-level diode laser on serum chemokine MCP-1 modulation in mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effect of the low-level laser therapy (LLLT) in the modulation of cells related to inflammatory processes has been widely studied, with different parameters. The objective was to investigate the immediate and cumulative effect of infrared LLLT on chemokine monocyte chemotactic protein-1 (MCP-1) modulation in mice. Fifty-two isogenic mice were distributed in seven groups: control (n = 10, no surgical procedure), laser I (n = 7, surgical procedure and a single LLLT exposure 12 h after the surgery), laser II (n = 7, surgery followed by two LLLT exposures, 12 and 36 h after surgery), and laser III (n = 7, surgery followed by three LLLT exposures, 12, 36, and 60 h after surgery). For each group, a sham group (n = 21) underwent surgery without laser application. The animals in the laser groups received an infrared diode continuous laser exposure (AsGaAl, 780 nm wavelength, power of 20 mW, energy density of 10 J/cm2, spot size of 0,04 cm2) on three points (20 s per point), and a final energy of 0.4 J. The animals were sacrificed 36 h (laser I and sham I groups), 60 h (laser II and sham II), and 84 h (laser III and sham III groups) after surgery. The MCP-1 concentrations were measured by cytometric bead array. There was no significant difference between the three periods in the sham group (p = 0.3). There was a lower concentration of MCP-1 in the laser III group compared to the laser I group (p = 0.05). The infrared LLLT showed a cumulative effect in the modulation of chemokine MCP-1 concentration. Three LLLT exposures were necessary to achieve the MCP-1 modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fukuda TY, Jesus JF, Santos MG, Cazarini Júnior C, Tanji MM, Plapler H (2010) Aferição dos equipamentos de laser de baixa intensidade [Calibration of low-level laser therapy equipment]. Rev Bras Fisioter 14:303–308

    Article  PubMed  Google Scholar 

  2. Aimbire F, Albertini R, Pacheco MT et al (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24(1):33–37

    Article  PubMed  CAS  Google Scholar 

  3. Kitchen SS, Partridge CJ (1991) A review of low level laser therapy: Part I: background, physiological effects and hazards. Physiotherapy 77:161–168. Available from: http://www.sciencedirect.com/science/article/pii/S003194061061694X. Accessed 20 Jun 2011

    Google Scholar 

  4. Moshkovska T, Mayberry J (2005) It is time to test low level laser therapy in Great Britain. Postgrad Med J 81(957):436–441

    Article  PubMed  CAS  Google Scholar 

  5. Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178

    Article  PubMed  CAS  Google Scholar 

  6. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329

    Article  PubMed  Google Scholar 

  7. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168

    Article  PubMed  CAS  Google Scholar 

  8. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  PubMed  CAS  Google Scholar 

  9. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingival. Lasers Med Sci 23(3):331–335

    Article  PubMed  Google Scholar 

  10. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41(4):282–290

    Article  PubMed  Google Scholar 

  11. Schnabel RB, Baumert J, Barbalic M et al (2010) Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood 115(26):5289–5299

    Article  PubMed  CAS  Google Scholar 

  12. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Functional monocyte chemoattractant protein-1 promoter -2518 polymorphism and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 37(7):3421–3426

    Article  PubMed  CAS  Google Scholar 

  13. Bossink AW, Paemen L, Jansen PM, Hack CE, Thijs LG, Van Damme J (1995) Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood 86(10):3841–3847

    PubMed  CAS  Google Scholar 

  14. Ohta M, Kitadai Y, Tanaka S et al (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22(4):773–778

    PubMed  CAS  Google Scholar 

  15. Tucci M, Barnes EV, Sobel ES et al (2004) Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum 50(6):1842–1849

    Article  PubMed  CAS  Google Scholar 

  16. Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378

    Article  PubMed  Google Scholar 

  17. Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508

    Article  PubMed  Google Scholar 

  18. Damy SB, Camargo RS, Chammas R, Figueiredo LFP (2010) Aspectos fundamentais da experimentação animal—aplicações em cirurgia experimental [Fundamental aspects on animal research as applied to experimental surgery]. Rev Assoc Med Bras 56(1):103–111

    Article  PubMed  Google Scholar 

  19. Prado RP, Liebano RE, Hochman B, Pinfildi CE, Ferreira LM (2006) Experimental model for low level laser therapy on ischemic random skin flap in rats. Acta Cirug Bras 21(4):258–262

    Article  Google Scholar 

  20. Fukuda TY, Tanji MM, Jesus JF, Sato MN, Duarte AJ, Plapler H (2010) Single session to infrared low level diode laser on TNF-alpha and IL-6 cytokines release by mononuclear spleen cells in mice: a pilot study. Lasers Surg Med 42(6):584–588

    Article  PubMed  Google Scholar 

  21. Harigai M, Hara M, Yoshimura T, Leonard EJ, Inoue K, Kashiwazaki S (1993) Monocyte chemoattractant protein-1 (MCP-1) in inflammatory joint diseases and its involvement in the cytokine network of rheumatoid synovium. Clin Immunol Immunopathol 69(1):83–91

    Article  PubMed  CAS  Google Scholar 

  22. Harsimran K, Singh AA, Guruvinder S, Sharda S, Vasudha S (2009) Plasma monocyte chemoattractant protein-1 as risk marker in type 2 diabetes mellitus and coronary artery disease in North Indians. Diab Vasc Dis Res 6(4):288–290

    Article  PubMed  Google Scholar 

  23. Suga M, Iyonaga K, Ichiyasu H, Saita N, Yamasaki H, Ando M (1999) Clinical significance of MCP-1 levels in BALF and serum in patients with intersticial lung diseases. Eur Respir J 14(2):376–382

    Article  PubMed  CAS  Google Scholar 

  24. Yuan XP, He XS, Wang CX, Liu LS, Fu Q (2011) Triptolide attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrology (Carlton) 16(2):200–210

    Article  CAS  Google Scholar 

  25. Ukena SN, Westendorf AM, Hansen W et al (2005) The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet 6:43

    Article  PubMed  Google Scholar 

  26. Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–796

    Article  PubMed  Google Scholar 

  27. Moreira MS, Velasco IT, Ferreira LS et al (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B 97(3):145–151

    Article  PubMed  CAS  Google Scholar 

  28. Silva TC, Oliveira TM, Sakai VT et al (2010) In vivo effects on the expression of vascular endothelial growth factor-A165 messenger ribonucleic acid of an infrared diode laser associated or not with a visible red diode laser. Photomed Laser Surg 28(1):63–68

    Article  PubMed  CAS  Google Scholar 

  29. Carvalho CM, de Lacerda JA, dos Santos Neto FP, Cangussu MC, Marques AM, Pinheiro AL (2010) Wavelength effect in temporomandibular joint pain: a clinical experience. Lasers Med Sci 25(2):229–232

    Article  PubMed  Google Scholar 

  30. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP (2006) Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofac Orthop 130(3):371–377

    Article  Google Scholar 

  31. Sussai DA, Carvalho PT, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120

    Article  PubMed  Google Scholar 

  32. Fung DT, Ng GY, Leung MC, Tay DK (2003) Effects of a therapeutic laser on the ultrastructural morphology of repairing medial collateral ligament in a rat model. Lasers Surg Med 32(4):286–293

    Article  PubMed  Google Scholar 

  33. Doin-Silva R, Baranauskas V, Rodrigues-Simioni L, da Cruz-Höfling MA (2009) The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochem Photobiol 85(1):63–69

    Article  PubMed  CAS  Google Scholar 

  34. Ng GY, Fung DT, Leung MC, Guo X (2004) Comparison of single and multiple applications of GaAlAs laser on rat medial collateral ligament repair. Lasers Surg Med 34(3):285–289

    Article  PubMed  Google Scholar 

  35. Ng GY, Fung DT, Leung MC, Guo X (2004) Ultrastructural comparison of medial collateral ligament repair after single or multiple applications of GaAlAs laser in rats. Lasers Surg Med 35(4):317–323

    Article  PubMed  Google Scholar 

  36. Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration—an in vivo experimental study. Photochem Photobiol 86(6):1364–1372

    Article  PubMed  CAS  Google Scholar 

  37. Oliveira FS, Pinfildi CE, Parizoto NA et al (2009) Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneuous tendon. Lasers Surg Med 41(4):271–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Y. Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, T.Y., Tanji, M.M., de Jesus, J.F. et al. Infrared low-level diode laser on serum chemokine MCP-1 modulation in mice. Lasers Med Sci 28, 451–456 (2013). https://doi.org/10.1007/s10103-012-1072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1072-9

Keywords

Navigation