Skip to main content

Advertisement

Log in

Optical features for chronological aging and photoaging skin by optical coherence tomography

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The characteristics of skins in different aging processes were obtained by optical coherence tomography (OCT) single scattering model, and their optical parameters were analyzed quantitatively. Significant differences were found in epidermis thickness and attenuation coefficients in chronological aging skins and photonaging skins. These parameters can be served as indicators of skin type as well as the progress of aging. These results are valuable to the study of aging skin, and they could further help to understand the mechanism of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cua AB, Wilhelm KP, Maibach HI (1990) Elastic properties of human skin: relation to age, sex, and anatomical region. Arch Dermatol Res 282:283–288

    Article  PubMed  CAS  Google Scholar 

  2. Farage MA, Miller KW, Elsner P, Maibach HI (2007) Structural characteristics of the aging skin: a review. Cutan Ocul Toxicol 26:343–357

    Article  PubMed  Google Scholar 

  3. Helfrich YR, Sachs DL, Voorhees JJ (2008) Overview of skin aging and photoaging. Dermatol Nur 20:177–184

    Google Scholar 

  4. Domyati M, Attia S, Saleh F, Brown D, Birk D, Gasparro F, Ahmad H, Utto J (2002) Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 11:398–405

    Article  PubMed  Google Scholar 

  5. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  6. Schmitt J (1999) Optical coherence tomography: a review. IEEE J Select Top Quantum Elect 5:1205–1215

    Article  CAS  Google Scholar 

  7. Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37:958–963

    Article  PubMed  CAS  Google Scholar 

  8. van der Meer FJ, Faber DJ, Aalders MC, Poot AA, Vermes I, van Leeuwen TG (2010) Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography. Lasers Med Sci 25:259–267

    Article  PubMed  Google Scholar 

  9. Wang L, Jaques SL, Zhao X (1995) Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. Opt Lett 20:629–631

    Article  PubMed  CAS  Google Scholar 

  10. Kantarci K, Jack CR Jr (2004) Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease. Neuro Rx 1:196–205

    Article  PubMed  Google Scholar 

  11. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  12. Miyamae Y, Yamakawa Y, Kawabata M, Ozaki Y (2008) A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy. Appl Spectro 62:677–681

    Article  CAS  Google Scholar 

  13. Wu S, Li H, Yang H, Zhang X, Li Z, Xu S (2011) Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy. J Biomed Opt 16:040502

    Article  PubMed  Google Scholar 

  14. Li Z, Li H, He Y, Cai S, Xie S (2008) A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues. Phys Med Biol 53:5859–5866

    Article  PubMed  Google Scholar 

  15. Faber DJ, van de Meer FJ, Aalders CG (2004) Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt Exp 12:4353–4365

    Article  Google Scholar 

  16. Pan Y, Birngruber B, Engelhardt R (1997) Contrast limits of coherence-gate imaging in scattering media. App Opt 36:2979–2983

    Article  CAS  Google Scholar 

  17. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Elect 26:2166–2185

    Article  Google Scholar 

  18. Cauberg EC, de Bruin DM, Faber DJ, de Reijke TM, Visser M, de La Rosette JJ, van Leeuwen TG (2011) Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder. J Biomed Opt 15:066013

    Article  Google Scholar 

  19. Levitz D, Thrane L, Frosz M, Andersen P, Andersen C, Andersson-Engels S, Valanciunaite J, Swartling J, Hansen PR (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Exp 12:4249–4259

    Article  Google Scholar 

  20. Tomlins P, Wang R (2005) Theory, developments and applications of optical coherence tomography. J Phys D: Appl Phys 38:2519–2535

    Article  CAS  Google Scholar 

  21. Schmitt JM, Knüttel A, Bonner RF (1993) Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl Opt 32:6032–6042

    Article  PubMed  CAS  Google Scholar 

  22. Therkildsen P, Haedersdal M, Lock-Andersen J, de Fine OF, Poulsen T, Wull HC (1998) Epidermal thickness measured by light microscopy: a methodological study[J]. Skin Res Technol 4:174–179

    Article  Google Scholar 

  23. Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TAM (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9:274–281

    Article  PubMed  Google Scholar 

  24. Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Exp 12:5760–69

    Article  Google Scholar 

  25. Sun P, Wang Y, Mo X, Xie J (2008) Noninvasive determination of absorption coefficient and reduced scattering coefficient of human skin tissues in vivo with oblique-incidence reflectometry. Chin Opt Lett 6:932–934

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61178089), the Research Fund for the Doctoral Program of Higher Education (No. 200803940001) and the Natural Science Foundation of Fujian Province (No. 2010 J01323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Li, H., Zhang, X. et al. Optical features for chronological aging and photoaging skin by optical coherence tomography. Lasers Med Sci 28, 445–450 (2013). https://doi.org/10.1007/s10103-012-1069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1069-4

Keywords

Navigation