Skip to main content

Advertisement

Log in

Effect of low-level laser therapy (LLLT) on orthodontic tooth movement

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the effects of low-level laser therapy (LLLT) on (1) the velocity of orthodontic tooth movement and (2) the nitric oxide levels in gingival crevicular fluid (GCF) during orthodontic treatment. The sample consisted of 20 patients (14 girls, six boys) whose maxillary first premolars were extracted and canines distalized. A gallium-aluminum-arsenide (Ga-Al-As) diode laser was applied on the day 0, and the 3rd, 7th, 14th, 21st, and 28th days when the retraction of the maxillary lateral incisors was initiated. The right maxillary lateral incisors composed the study group (the laser group), whereas the left maxillary lateral incisors served as the control. The teeth in the laser group received a total of ten doses of laser application: five doses from the buccal and five doses from the palatal side (two cervical, one middle, two apical) with an output power of 20 mW and a dose of 0.71 J /cm2. Gingival crevicular fluid samples were obtained on the above-mentioned days, and the nitric oxide levels were analyzed. Bonferroni and repeated measures variant analysis tests were used for statistical analysis with the significance level set at p ≤ 0.05. The application of low-level laser therapy accelerated orthodontic tooth movement significantly; there were no statistically significant changes in the nitric oxide levels of the gingival crevicular fluid during orthodontic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohammed AH, Tatakis DN, Dziak R (1989) Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 95:231–237

    Article  PubMed  CAS  Google Scholar 

  2. Storey E (1973) The nature of tooth movement. Am J Orthod 63:292–314

    Article  PubMed  CAS  Google Scholar 

  3. King GJ, Thiems S (1979) Chemical mediation of bone resorption induced by tooth movement in the rat. Arch Oral Biol 24:811–825

    Article  PubMed  CAS  Google Scholar 

  4. Polat Ö, Karaman AI (2004) Orthodontic tooth movement and biochemical agents. Turk J Orthod 17:140–147

    Google Scholar 

  5. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappa B ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H (2001) Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod 23:535–545

    Article  PubMed  CAS  Google Scholar 

  7. Tyrovola JB, Spyropoulos MN (2001) Effects of drugs and systemic factors on orthodontic treatment. Quintessence Int 32:365–371

    PubMed  CAS  Google Scholar 

  8. Akin E, Gurton AU, Olmez H (2004) Effects of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 126:608–614

    Article  PubMed  Google Scholar 

  9. Lavine L, Lustrin I, Rinaldi R, Shamos M (1974) Clinical and ultrastructural investigations of electrical enhancement of bone healing. Ann N Y Acad Sci 238:552–63

    Google Scholar 

  10. Rodan GA, Bourret LA, Norton LA (1978) DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 199(4329):690–692

    Google Scholar 

  11. Goldie RS, Gregory KJ (1984) Root Resorpsion and orthodontic tooth movement in orthodontically treated, calcium-deficient and lactating rats. Am J Orthod 85:424–430

    PubMed  CAS  Google Scholar 

  12. Kale S, Kocadereli I, Atilla P, Aşan E (2004) Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthod 125(5):607–614

    Article  PubMed  Google Scholar 

  13. Ong CKL, Walsh LJ, Harbrow D, Taverne AAR, Symons AL (2000) Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthodontist 70(2):118–125

    Article  PubMed  Google Scholar 

  14. Sebaoun JD, Ferguson DJ, Wilcko MT, Wilcko WM (2007) Alveolar osteotomy and rapid orthodontic treatments. Orthod Fr 78(3):217–225

    Article  PubMed  CAS  Google Scholar 

  15. Cho KW, Cho SW, Oh CO, Ryu YK, Ohshima H, Jung HS (2007) The effect of cortical activation on orthodontic tooth movement. Oral Dis 13(3):314–319

    Article  PubMed  Google Scholar 

  16. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111(5):525–532

    Article  PubMed  Google Scholar 

  17. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M (2008) The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 23(1):27–33

    Google Scholar 

  18. Loe H (1967) The Gingival Index, the Plaque Index, and the Retention Index. J Periodontol 38:610–616

    Google Scholar 

  19. Proffit WR (2000) Biologic basis of orthodontic therapy. In: Proffit WR, Fields HW (eds) Contemporary Orthodontics, 3rd edn. Mosby Inc, St Louis, Missouri, pp 296–325

    Google Scholar 

  20. Grisham MB, Johnson GG, Lancaster JR (1996) Quantitation of nitrate and nitrite in extracellular fluid. Methods Enzymol 268:237–246

    Article  PubMed  CAS  Google Scholar 

  21. Seifi M, Shafeei HA, Daneshdoost S, Mir M (2007) Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 22:261–264

    Article  PubMed  Google Scholar 

  22. De Nguyen T, Turcotte JY (1994) Lasers in maxillofacial surgery and dentistry. J Can Dent Assoc 60(227–8):231–236

    Google Scholar 

  23. Skinner SM, Gage JP, Wilce PA, Shaw RM (1996) A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Aust Dent J 41:188–192

    Article  PubMed  CAS  Google Scholar 

  24. Yaakobi T, Maltz L, Oron U (1996) Promotion of bone repair in the cortical bone of tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 59:297–300

    Article  PubMed  CAS  Google Scholar 

  25. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    Article  PubMed  CAS  Google Scholar 

  26. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  PubMed  CAS  Google Scholar 

  27. Yamaguchi M, Fujita S, Yoshida T, Oikawa K, Utsunomiya T, Yamamoto H, Kasai K (2007) Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthodontic Waves 66:139–148

    Google Scholar 

  28. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35:117–120

    Article  PubMed  Google Scholar 

  29. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C (2006) Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 9:38–43

    Article  PubMed  CAS  Google Scholar 

  30. Bolton P, Young S, Dyson M (1991) Macrophage responsiveness to light therapy with varying power and energy densities. Laser Ther 3:105–112

    Google Scholar 

  31. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39

    Article  PubMed  CAS  Google Scholar 

  32. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi K, Igarashi K, Miyoshi K, Shinoda H, Mitani H (2002) Involvement of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 122:306–309

    Article  PubMed  Google Scholar 

  34. Shirazi M, Nilforoushan D, Alghasi H, Dehpour AR (2002) The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod 72:211–215

    PubMed  Google Scholar 

  35. D’Attillio M, Di Maio F, D’Arcangela C, Filippi MR, Felaco M, Lohinai Z, Festa F, Perinetti G (2004) Gingival endothelial and inducible nitric oxide synthase levels during orthodontic treatment: a cross-sectional study. Angle Orthod 74:851–858

    PubMed  Google Scholar 

  36. Lundy FT, O’Hare MM, McKibben BM, Fulton CR, Briggs JE, Linden GJ (2006) Radioimmunoassay quantification of adrenomedullin in human gingival crevicular fluid. Arch Oral Bio 51:334–338

    Article  CAS  Google Scholar 

  37. Griffiths GS (2003) Formation, collection and significance of gingival crevice fluid. Periodontol 31:32–42

    Article  Google Scholar 

  38. Kendall HK, Marshall RI, Bartold PM (2001) Nitric oxide and tissue destruction. Oral Dis 7:2–10

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlken Kocadereli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genc, G., Kocadereli, İ., Tasar, F. et al. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 28, 41–47 (2013). https://doi.org/10.1007/s10103-012-1059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1059-6

Keywords

Navigation