Skip to main content

Advertisement

Log in

Soil contaminated with PAHs and nitro-PAHs: contamination levels in an urban area of Catania (Sicily, southern Italy) and experimental results from simulated decontamination treatment

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This study is aimed at investigating the levels of polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons in polluted urban soils and the potential application of microwave heating as decontamination treatment. The soil samples were collected from an area of 0.05 km2 of Catania (Sicily, southern Italy) rural site. HPLC in fluorescence and electrochemical–fluorescence detection mode were used for selective separation, identification and quantification of pollutants in soil samples. A bench-scale microwave treatment was performed irradiating a contaminated soil using different operating powers for removing both kinds of contaminants. Results reveal that soil pollutant concentrations were sometimes higher than those found in other locations. Polyaromatic and nitro-polyaromatic hydrocarbon levels observed suggest a strong contribution from incomplete combustion of gasoline or other fuels also due to the vicinity to the airport. Many polyaromatic hydrocarbon derivatives are more carcinogenic than the initial contaminant form and may have toxicological significance, even if present at much lower concentrations than their parent compounds. Thus, the environmental levels of these pollutants need to be monitored and removed. Contaminant removals from simulated microwave remediation show that the treatment is effective. Results also showed that contaminant features, especially polarity, significantly influence the dielectric properties of the soil and thus the final temperature reachable during the heating processes and the contaminant removals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramovitch RA, Bangzhou H, Abramovitch DA, Jiangao S (1999) In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosphere 39:81–87

    Article  CAS  Google Scholar 

  • Alagić SČ, Maluckov BS, Radojičić VB (2015) How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technol Environ Policy 17:597–614. doi:10.1007/s10098-014-0840-6

    Article  Google Scholar 

  • Albanese S, Fontaine B, Chen W, Lima A, Cannatelli C, Piccolo A, Qi S, Wang M, De Vivo B (2015) Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: the Campania Plain (Southern Italy) case study. Environ Geochem Health 37:1–20

    Article  CAS  Google Scholar 

  • Alcántara MT, Gómez J, Pazos M, Sanromán MA (2012) Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma 173–174:128–133. doi:10.1016/j.geoderma.2011.12.009

    Article  Google Scholar 

  • Bandowe BAM, Meusel H, Huang RJ, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87. doi:10.1016/j.scitotenv.2013.11.108

    Article  Google Scholar 

  • Barnier C, Ouvrard S, Robin C, Morel JL (2014) Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ 470–471:639–645. doi:10.1016/j.scitotenv.2013.10.032

    Article  Google Scholar 

  • Bocos E, Fernández-Costas C, Pazos M, Sanromán MÁ (2015) Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere 125:168–174. doi:10.1016/j.chemosphere.2014.12.049

    Article  CAS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C et al (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241. doi:10.1007/s10098-010-0319-z

    Article  Google Scholar 

  • Chang JH, Qiang Z, Huang CP, Ellis AV (2009) Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants-Triton X-100 and rhamnolipid. Colloids Surf A Physicochem Eng Asp 348:157–163. doi:10.1016/j.colsurfa.2009.07.005

    Article  CAS  Google Scholar 

  • Cihacek LJ, Bremner JM (1979) A simplified ethylene glycol monoethyl ether procedure for assessment of soil surface area. Soil Sci Soc Am J 43:821–822

    Article  CAS  Google Scholar 

  • De Guidi G, Librando V, Minniti Z, Bolzacchini E, Perrini G, Bracchitta G, Alparone A, Catalfo A (2012) The PAH and Nitro-PAH concentration profiles in size-segregated urban particulate matter and soil in traffic- related sites in Catania, Italy. Polycycl Aromat Compd 32:439–456

    Article  Google Scholar 

  • De Souza e Silva PT, da Silva VL, Neto BDB, Simonnot MO (2009) Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. J Hazard Mater 168:1269–1273. doi:10.1016/j.jhazmat.2009.03.007

    Article  Google Scholar 

  • Deng D, Lin X, Ou J, Wang Z, Li S, Deng M, Shu Y (2015) Efficient chemical oxidation of high levels of soil-sorbed phenanthrene by ultrasound induced, thermally activated persulfate. Chem Eng J 265:176–183. doi:10.1016/j.cej.2014.12.055

    Article  CAS  Google Scholar 

  • Di Stefano A, Branca S (2002) Long-term uplift rate of the Etna volcano basement (southern Italy) based on biochronological data from Pleistocene sediments. In: FAO-ISRIC (1990). Rome, pp 61–68

  • Falciglia PP, Vagliasindi FGA (2014) Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations. Environ Technol 35:2280–2288. doi:10.1080/09593330.2014.902109

    Article  CAS  Google Scholar 

  • Falciglia PP, Vagliasindi FGA (2015) Remediation of hydrocarbon polluted soils using 2.45 GHz frequency-heating: influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics. J Geochem Explor 151:66–73. doi:10.1016/j.gexplo.2015.01.007

    Article  CAS  Google Scholar 

  • Falciglia PP, Vagliasindi FGA (2016) Techno-economic analysis of hydrocarbon-polluted soil treatment by using ex situ microwave heating: influence of soil texture and soil moisture on electric field penetration, operating conditions and energy costs. J Soils Sediments 16:1330–1344. doi:10.1007/s11368-015-1130-6

    Article  CAS  Google Scholar 

  • Falciglia PP, Giustra MG, Vagliasindi FGA (2011a) Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. J Hazard Mater 185:392–400. doi:10.1016/j.jhazmat.2010.09.046

    Article  CAS  Google Scholar 

  • Falciglia PP, Giustra MG, Vagliasindi FGA (2011b) Remediation by thermal desorption of diesel-contaminated soils. Chem Ecol 27:119–130. doi:10.1080/02757540.2010.534087

    Article  CAS  Google Scholar 

  • Falciglia PP, Urso G, Vagliasindi FGA (2013) Microwave heating remediation of soils contaminated with diesel fuel. J Soils Sediments 13:1396–1407. doi:10.1007/s11368-013-0727-x

    Article  CAS  Google Scholar 

  • Falciglia PP, Mancuso G, Scandura P, Vagliasindi FGA (2015) Effective decontamination of low dielectric hydrocarbon-polluted soils using microwave heating: experimental investigation and modelling for in situ treatment. Sep Purif Technol 156(2015):480–488. doi:10.1016/j.seppur.2015.10.038

    Article  CAS  Google Scholar 

  • Falciglia PP, Maddalena R, Mancuso G, Messina V, Vagliasindi FGA (2016) Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy. J Environ Manag 167:196–205. doi:10.1016/j.jenvman.2015.11.046

    Article  CAS  Google Scholar 

  • Garcia KO, Teixeira EC, Agudelo-Castañeda DM, Braga M, Alabarse PG, Wiegand F, Kautzmann RM, Silva LFO (2014) Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci Total Environ 479–480:57–65. doi:10.1016/j.scitotenv.2014.01.126

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260. doi:10.1016/j.scitotenv.2012.11.098

    Article  Google Scholar 

  • Haapea P, Tuhkanen T (2006) Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. J Hazard Mater 136:244–250. doi:10.1016/j.jhazmat.2005.12.033

    Article  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Aoyama I, Jedidi N (2012) Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeterior Biodegrad 67:40–47. doi:10.1016/j.ibiod.2011.10.009

    Article  CAS  Google Scholar 

  • Harvey O, Harris JP, Herbert B, Stiffler E, Haney S (2010) Natural organic matter and the formation of calcium silicate hydrate in lime-stabilized smectites: a thermal analysis study. Thermochim Acta 505:106–113

    Article  CAS  Google Scholar 

  • Holloway MP, Biaglow MC, McCoy EC, Anders M, Rosenkranz HS, Howard PC (1987) Photochemical instability of 1-nitropyrene, 3-nitrofluoranthene, 1,8-dinitropyrene and their parent polycyclic aromatic hydrocarbons. Mutat Res 187:199–207

    Article  CAS  Google Scholar 

  • Kawala Z, Atamańczuk T (1998) Microwave-enhanced thermal decontamination of soil. Environ Sci Technol 32:2602–2607. doi:10.1021/es980025m

    Article  CAS  Google Scholar 

  • Kawanaka Y, Matsumoto E, Sakamoto K, Wang N, Yun S (2004) Size distributions of mutagenic compounds and mutagenicity in atmospheric particulate matter collected with a low-pressure cascade impactor. Atmos Environ 14:2125–2132

    Article  Google Scholar 

  • Kwon HO, Choi SD (2014) Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci Total Environ 470–471:1494–1501. doi:10.1016/j.scitotenv.2013.08.031

    Article  Google Scholar 

  • Lang DA, Bastow TP, van Aarssen BGK, Warton B, Davis GB, Johnston CD (2009) Polar compounds from the dissolution of weathered diesel. Groundw Monit Remediat 29:85–93. doi:10.1111/j.1745-6592.2009.01260.x

    Article  CAS  Google Scholar 

  • Li D, Zhang Y, Quan X, Zhao Y (2009a) Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J Environ Sci 21:1290–1295. doi:10.1016/S1001-0742(08)62417-1

    Article  Google Scholar 

  • Li X, Lin X, Li P, Liu W, Wang L, Ma F, Chukwuka KS (2009b) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605. doi:10.1016/j.jhazmat.2009.07.044

    Article  CAS  Google Scholar 

  • Li F, Guo S, Hartog N (2012) Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochim Acta 85:228–234. doi:10.1016/j.electacta.2012.08.055

    Article  CAS  Google Scholar 

  • Librando V, Bracchitta G, De Guidi G, Minniti Z, Perrini G, Catalfo A (2014) Photodegradation of Anthracene and Benzo[a]anthracene in polar and apolar media: new pathways of photodegradation. Polycycl Aromat Compd 34:264–279

    Article  Google Scholar 

  • Lin L, Yuan S, Chen J, Wang L, Wan J, Lu X (2010) Treatment of chloramphenicol-contaminated soil by microwave radiation. Chemosphere 78:66–71. doi:10.1016/j.chemosphere.2009.09.054

    Article  CAS  Google Scholar 

  • Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17. doi:10.1016/j.envpol.2012.02.004

    Article  CAS  Google Scholar 

  • Lu Y-F, Lu M (2014) Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J Hazard Mater 285:535–541. doi:10.1016/j.jhazmat.2014.07.021

    Article  Google Scholar 

  • Lundstedt S, Bandowe BAM, Wilcke W, Boll E, Christensen JH, Vila J, Grifoll M, Faure P (2014) Trends in analytical chemistry first intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil. Trends Anal Chem 57:83–92. doi:10.1016/j.trac.2014.01.007

    Article  CAS  Google Scholar 

  • Luque-Garcıa JL, Luque de Castro MD (2003) Static pressurized liquid extraction of nitrated polycyclic aromatic hydrocarbons from soils with on-line filtration-preconcentration prior to gas chromatography-mass spectrometry detection. Analyst 128:980–985

    Article  Google Scholar 

  • Mahanty B, Pakshirajan K, Dasu VV (2010) Batch biodegradation of PAHs in mixture by Mycobacterium frederiksbergense: analysis of main and interaction effects. Clean Technol Environ Policy 12:441. doi:10.1007/s10098-009-0229-0

    Article  CAS  Google Scholar 

  • Niederer M (1998) Determination of polycyclic aromatic hydrocarbons and substitutes (nitro-, Oxy-PAHs) in urban soil and airborne particulate by GC-MS and NCI-MS/MS. Environ Sci Pollut Res Int 5:209–216. doi:10.1007/BF02986403

    Article  CAS  Google Scholar 

  • O’Mahony MM, Dobson ADW, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314. doi:10.1016/j.chemosphere.2005.07.018

    Article  Google Scholar 

  • Orecchio S (2010) Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. J Hazard Mater 173:358–368. doi:10.1016/j.jhazmat.2009.08.088

    Article  CAS  Google Scholar 

  • Pazos M, Rosales E, Alcántara T, Gómez J, Sanromán MA (2010) Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater 177:1–11. doi:10.1016/j.jhazmat.2009.11.055

    Article  CAS  Google Scholar 

  • Pelaez AI, Lores I, Sotres A, Mendez-Garcia C, Fernandez-Velarde C, Santos JA, Gallego JLR, Sanchez J (2013) Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil. Environ Pollut 181:190–199. doi:10.1016/j.envpol.2013.06.004

    Article  CAS  Google Scholar 

  • Rafael A, Morel M (2013) Phototransformations of dinitropyrene isomers on models of the atmospheric particulate matter. Atmos Environ 75:171–178

    Article  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Robinson JP, Kingman SW, Snape CE, Shang H, Barranco R, Saeid A (2009) Separation of polyaromatic hydrocarbons from contaminated soils using microwave heating. Sep Purif Technol 69:249–254. doi:10.1016/j.seppur.2009.07.024

    Article  CAS  Google Scholar 

  • Robinson JP, Kingman SW, Lester EH, Yi C (2012) Microwave remediation of hydrocarbon-contaminated soils: scale-up using batch reactors. Sep Purif Technol 96:12–19. doi:10.1016/j.seppur.2012.05.020

    Article  CAS  Google Scholar 

  • Sayara T, Pognani M, Sarrà M, Sánchez A (2010) Anaerobic degradation of PAHs in soil: impacts of concentration and amendment stability on the PAHs degradation and biogas production. Int Biodeterior Biodegrad 64:286–292. doi:10.1016/j.ibiod.2010.02.005

    Article  CAS  Google Scholar 

  • Sheen J (2005) Study of microwave dielectric properties measurements by various resonance techniques. Measurement 37:123–130

    Article  Google Scholar 

  • Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Concepción C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ Policy 14:719–726. doi:10.1007/s10098-011-0439-0

    Article  CAS  Google Scholar 

  • Souza KF, Carvalho LRF, Allen AG, Cardoso AA (2014) Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region. Atmos Environ 83:193–201. doi:10.1016/j.atmosenv.2013.11.007

    Article  CAS  Google Scholar 

  • Sun GD, Xu Y, Jin JH, Zhong ZP, Liu Y, Luo M, Liu ZP (2012) Pilot scale ex situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. J Hazard Mater 233–234:72–78. doi:10.1016/j.jhazmat.2012.06.060

    Article  Google Scholar 

  • Wang X-T, Miao Y, Zhang Y, Li Y-C, Wu M-H, Yu G (2013) Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci Total Environ 447:80–89

    Article  CAS  Google Scholar 

  • Wesp HF, Tang X, Edenharder R (2000) The influence of automobile exhausts on mutagenicity of soils: contamination with, fractionation, separation, and preliminary identification of mutagens in the Salmonella/reversion assay and effects of solvent fractions on the sister-chromatid exchanges. Mutat Res Genet Toxicol Environ Mutagen 472:1–21. doi:10.1016/S1383-5718(00)00088-7

    Article  CAS  Google Scholar 

  • Yuan S, Tian M, Lu X (2006) Microwave remediation of soil contaminated with hexachlorobenzene. J Hazard Mater 137:878–885. doi:10.1016/j.jhazmat.2006.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the following institutions is gratefully acknowledged: the Italian MURST, in the framework of the “FIR 2014” Università degli studi di Catania. Thanks to Dr. Irene Faro for soil sampling, treatment and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro P. Falciglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Guidi, G., Falciglia, P.P., Catalfo, A. et al. Soil contaminated with PAHs and nitro-PAHs: contamination levels in an urban area of Catania (Sicily, southern Italy) and experimental results from simulated decontamination treatment. Clean Techn Environ Policy 19, 1121–1132 (2017). https://doi.org/10.1007/s10098-016-1305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1305-x

Keywords

Navigation