Skip to main content
Log in

Design of novel polymeric adsorbents for metal ion removal from water using computer-aided molecular design

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Heavy metals in drinking water act as contaminants that can cause serious health problems. These metal ions in drinking water are generally removed using cation exchange resins that are used as adsorbents. Generally, chelating resins with limited adsorption capacity are commercially available. Manufacturing novel resin polymers with enhanced adsorption capacity of metal ion requires ample experimental efforts that are expensive as well as time consuming. To overcome these difficulties, application of computer-aided molecular design (CAMD) will be an efficient way to develop novel chelating resin polymers. In this paper, CAMD based on group contribution method (GCM) has been used to design novel resins with enhanced adsorption capability of removing heavy metal ions from water. A polymer consists of multiple monomer units that repeat in a polymer chain. Each repeat unit of the polymer can be subdivided into different structural and functional groups. The adsorption mechanism of heavy metals on resin depends on the difference between activities in adsorbents and the bulk fluid phase. The contribution of the functional groups in the adsorption process is found by estimating the activity coefficient of heavy metal in the solid phase and bulk phase using a modified version of the UNIFAC GCM. The interaction parameters of the functional groups are first determined and then they are used in a combinatorial optimization method for CAMD of novel resin polymers. In this work, designs of novel resin polymers for the removal of Cu ions from drinking water are used as a case study. The proposed new polymer resin has an order of magnitude higher adsorption capacity compared to conventional resin used for the same purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agouborde L, Navia R (2009) Heavy metals retention capacity of a non- conventional sorbent developed from a mixture of industrial and agricultural wastes. J Hazard Mater 167(1):536–544

    Article  CAS  Google Scholar 

  • Ali MB, Chabanne RB, Vocanson F, Dridi C, Jaffrezic N, Lamartine R (2006) Comparison study of evaporated thiacalix [4] arene thin films on gold substrates as copper ion sensing. Thin Solid Films 495(1):368–371

    Google Scholar 

  • Alvarado-Morales M, Terra J, Gernaey KV, Woodley JM, Gani R (2009) Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem Eng Res Des 87(2009):1171–1183

    Article  CAS  Google Scholar 

  • Ang XW, Sethu VS, Andresen JM, Sivakumar M (2013) Copper (II) ion removal from aqueous solutions using biosorption technology: thermodynamic and SEM–EDX studies. Clean Technol Environ Policy 15(2):401–407

    Article  CAS  Google Scholar 

  • Atia AA, Donia AM, Yousif AM (2008) Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep Purif Technol 61(3):348–357

    Article  CAS  Google Scholar 

  • Atzei D, Ferri T, Sadun C, Sangiorgio P, Caminiti R (2001) Structural characterization of complexes between iminodiacetate blocked on styrene- divinylbenzene matrix (Chelex 100 resin) and Fe(III), Cr(III), and Zn(II) in solid phase by energy-dispersive X-ray diffraction. J Am Chem Soc 123(11):2552–2558

    Article  CAS  Google Scholar 

  • Baraka A, Hall PJ, Heslop MJ (2007) Preparation and characterization of melamine–formaldehyde–DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym 67(7):585–600

    Article  CAS  Google Scholar 

  • Benavides PT, Diwekar U (2015) Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 1: Group contribution method for adsorption. Chem Eng Sci 137:964–976

    Article  CAS  Google Scholar 

  • Benavides PT, Gebreslassie BH, Diwekar UM (2015) Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 2: CAMD for adsorption of radium and barium. Chem Eng Sci 137:977–985

    Article  CAS  Google Scholar 

  • Berti C, Ulbig P, Burdorf J, Seippel J, Schulz S (1999) Correlation and prediction of liquid-phase adsorption on zeolites using group contribution methods based on the adsorbate solid solution theory. Langmuir 15:6035–6042

    Article  CAS  Google Scholar 

  • Berti C, Ulbig P, Schulz S (2000) Correlation and prediction of adsorption from liquid mixtures on solids by use of GE-Models. Adsorption 6:79–91

    Article  CAS  Google Scholar 

  • Bhagat M, Burgess JE, Antunes APM, Whiteley CG, Duncan JR (2004) Precipitation of mixed metal residues from wastewater utilising biogenic sulphide. Miner Eng 17(7):925–932

    Article  CAS  Google Scholar 

  • Camarda KV, Maranas CD (1999) Optimization in polymer design using connectivity indices. Ind Eng Chem Res 38(5):1884–1892

    Article  CAS  Google Scholar 

  • Chemmangattuvalappil NG, Eljack FT, Solvason CC, Eden MR (2009) A novel algorithm for molecular synthesis using enhanced property operators. Comp Chem Eng 33(2009):636–643

    Article  CAS  Google Scholar 

  • Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56(4):1561–1570

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884

    Article  CAS  Google Scholar 

  • Chouchene A, Jeguirim M, Trouvé G (2014) Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol Environ Policy 16(5):979–986

    Article  CAS  Google Scholar 

  • Cox DW (1999) Disorders of copper transport. Br Med Bull 55(3):544–555

    Article  CAS  Google Scholar 

  • Dakova I, Karadjova I, Ivanov I, Georgieva V, Evtimova B, Georgiev G (2007) Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads. Anal Chim Acta 584(1):196–203

    Article  CAS  Google Scholar 

  • Dinu MV, Dragan ES (2008) Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. React Funct Polym 68(9):1346–1354

    Article  CAS  Google Scholar 

  • Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for optimization under uncertainty. AIChE J 43:440–447

    Article  CAS  Google Scholar 

  • Diwekar UM, Shastri Y (2011) Design for environment: a state-of-the-art review. Clean Technol Environ Policy 13:227–240

    Article  Google Scholar 

  • Diwekar, UM, Ulas S (2007) Sampling techniques encyclopedia of chemical technology, vol 1. Wiley, New York

  • Diwekar U, Xu W (2005) Improved genetic algorithms for deterministic optimization and optimization under uncertainty. Part I. algorithms development. Ind Eng Chem Res 44:7132–7137

    Article  CAS  Google Scholar 

  • Donia AM, Atia AA, El-Boraey H, Mabrouk DH (2006) Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Sep Purif Technol 49(1):64–70

    Article  CAS  Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimization theory. A brandford book. The MIT Press, Cambridge

    Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms, Department of Electronics, Politecnico di Milano, Italy, Ph.D Thesis

  • Dridi C, Ali MB, Vocanson F, Davenas J, Maamar SB, Meganem F, Jaffrezic-Renault N (2008) Electrical and optical study on modified Thiacalix (4) arene sensing molecules: application to Hg2+ ion detection. Mater Sci Eng, C 28(5):765–770

    Article  CAS  Google Scholar 

  • Duran A, Soylak M, Tuncel SA (2008) Poly (vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J Hazard Mater 155(1):114–120

    Article  CAS  Google Scholar 

  • Eljack FT, Eden MR (2008) Systematic visual approach to molecular design via property clusters and group contribution methods. Comput Chem Eng 32:3002–3010

    Article  CAS  Google Scholar 

  • Gebreslassie BH, Diwekar UM (2015) Efficient ant colony optimization for computer aided molecular design: case study solvent selection problem. Comput Chem Eng 78:1–9

    Article  CAS  Google Scholar 

  • Gernaey KV, Gani R (2010) A model-based systems approach to pharmaceutical product process design and analysis. Chem Eng Sci 65:5757–5769

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2005) Interaction of metal ions with clays: i. A case study with Pb(II). Appl Clay Sci 30(3):199–208

    Article  Google Scholar 

  • Harper PM, Gani R (2000) A multi-step and multi-level approach for computer aided molecular design. Comput Chem Eng 24:677–683

    Article  CAS  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hostrup M, Harper P, Gani R (1999) Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng 23(1999):1395–1414

    Article  CAS  Google Scholar 

  • Hu X, Li Y, Wang Y, Li X, Li H, Liu X, Zhang P (2010) Adsorption kinetics, thermodynamics and isotherm of thiacalix [4] arene-loaded resin to heavy metal ions. Desalination 259(1):76–83

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56

    Article  CAS  Google Scholar 

  • Jing X, Liu F, Yang X, Ling P, Li L, Long C, Li A (2009) Adsorption performances and mechanisms of the newly synthesized N,N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J Hazard Mater 167(1):589–596

    Article  CAS  Google Scholar 

  • Juang R-S, Wang Y-C (2003) Ligand-enhanced separation of divalent heavy metals from aqueous solutions using a strong-acid ion-exchange resin. Ind Eng Chem Res 42:1948–1954

    Article  CAS  Google Scholar 

  • Jung MJ, Venkateswaran P, Lee YS (2008) Solvent extraction of nickel (II) ions from aqueous solutions using triethylamine as extractant. J Ind Eng Chem 14(1):110–115

    Article  CAS  Google Scholar 

  • Kantipuly G, Katragadda S, Chow A, Gesser HD (1990) Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 37:491–498

    Article  CAS  Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16(2):385–393

    Article  CAS  Google Scholar 

  • Kazantzi V, Qin X, El-Halwagi M, Eljack FT, Eden MR (2007) Simultaneous process and molecular design through property clustering. Ind Eng Chem Res 46(2007):3400–3409

    Article  CAS  Google Scholar 

  • Kikic I, Fermeglia M, Rasmussen P (1991) Unifac prediction of vapor—liquid equilibria in mixed solvent—salt systems. Chem Eng Sci 46(11):2775–2780

    Article  CAS  Google Scholar 

  • Kim K, Diwekar U (2002a) Efficient combinatorial optimization under uncertainty. 2. Application to stochastic solvent selection. Ind Eng Chem Res 41:1285–1296

    Article  CAS  Google Scholar 

  • Kim K, Diwekar U (2002b) Hammersley stochastic annealing: efficiency improvement for combinatorial optimization under uncertainty. IIE Trans Inst Ind Eng 34:761–777

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  • Li M, Harten PF, Cabezas H (2002) Experiences in designing solvents for the environment. Ind Eng Chem Res 41:5867–5877

    Article  CAS  Google Scholar 

  • Lin SH, Lai SL, Leu HG (2000) Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process. J Hazard Mater 76(1):139–153

    Article  CAS  Google Scholar 

  • Mahabir S, Spitz MR, Barrera SL, Beaver SH, Etzel C, Forman MR (2007) Dietary zinc, copper and selenium, and risk of lung cancer. Int J Cancer 120(5):1108–1115

    Article  CAS  Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2015) Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 17(1):85–102

    Article  CAS  Google Scholar 

  • Maranas CD (1996) Optimal computer-aided molecular design: a polymer design case study. Ind Eng Chem Res 35:3403–3414

    Article  CAS  Google Scholar 

  • Maroušek J (2014a) Significant breakthrough in biochar cost reduction. Clean Technol Environ Policy 16(8):1821–1825

    Article  Google Scholar 

  • Maroušek J (2014b) c. Economically oriented process optimization in waste management. Environ Sci Pollut Res 21(12):7400–7402

    Article  Google Scholar 

  • Maroušek J, Zeman R, Vaníčková R, Hašková S (2014) New concept of urban green management. Clean Technol Environ Policy 16(8):1835–1838

    Article  Google Scholar 

  • Maroušek J, Hašková S, Zeman R, Žák J, Vaníčková R, Maroušková A, Vachal J, Myšková K (2015) Techno-economic assessment of processing the cellulose casings waste. Clean Technol Environ Policy 17(8):2441–2446

    Article  Google Scholar 

  • Marrero J, Gani R (2001) Group–contribution based estimation of pure component properties. Fluid Phase Equilib 184:183–208

    Article  Google Scholar 

  • Morohashi N, Iki N, Sugawara A, Miyano S (2001) Selective oxidation of thiacalix [4] arenes to the sulfinyl and sulfonyl counterparts and their complexation abilities toward metal ions as studied by solvent extraction. Tetrahedron 57(26):5557–5563

    Article  CAS  Google Scholar 

  • Remenárová L, Pipíška M, Florková E, Horník M, Rozložník M, Augustín J (2014) Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol Environ Policy 16(8):1551–1564

    Article  Google Scholar 

  • Ritchie SM, Kissick KE, Bachas LG, Sikdar SK, Parikh C, Bhattacharyya D (2001) Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol 35(15):3252–3258

    Article  CAS  Google Scholar 

  • Roy PK, Rawat AS, Rai PK (2003) Synthesis, characterisation and evaluation of polydithiocarbamate resin supported on macroreticular styrene–divinylbenzene copolymer for the removal of trace and heavy metal ions. Talanta 59:239–246

    Article  CAS  Google Scholar 

  • Roy PK, Rawat AS, Choudhary V, Rai PK (2004) Removal of heavy metal ions using polydithiocarbamate resin supported on polystyrene. Indian J Chem Technol 11(1):51–58

    CAS  Google Scholar 

  • Şahan T, Öztürk D (2014) Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol Environ Policy 16(5):819–831

    Article  Google Scholar 

  • Samudra AP, Sahinidis NV (2013) Optimization-based framework for computer- aided molecular design. AIChE J 59(10):3686–3701

    Article  CAS  Google Scholar 

  • Satyanarayana KC, Gani R, Abildskov J (2007) Polymer property modeling using grid technology for design of structured products. Fluid Phase Equilib 261:58–63

    Article  CAS  Google Scholar 

  • Satyanarayana KC, Abildskov J, Gani R, Tsolou G, Mavrantzas VG (2010) Computer aided polymer design using multi-scale modeling. Braz J Chem Eng 27(03):369–380

    Article  CAS  Google Scholar 

  • Schluter M, Gerdts M (2010) The oracle penalty method. J Global Optim 47:293–325

    Article  Google Scholar 

  • Schluter M, Gerdts M, Ruckmann JJ (2012) A numerical study of MIDACO on 100 MINLP benchmarks. Optimization 61:873–900

    Article  Google Scholar 

  • Shek TH, Ma A, Lee VK, McKay G (2009) Kinetics of zinc ions removal from effluents using ion exchange resin. Chem Eng J 146(1):63–70

    Article  CAS  Google Scholar 

  • Sundaram A, Venkatasubramanian V (1998) Parametric sensitivity and search- space characterization studies of genetic algorithms for computer-aided polymer design. J Chem Inf Comput Sci 38(6):1177–1191

    Article  CAS  Google Scholar 

  • Suzuki M (1990) Adsorption Engineering. Elsevier Science Publishing Company, INC, New York

    Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58(9):5538–5544

    Article  CAS  Google Scholar 

  • Ucun H, Aksakal O, Yildiz E (2009) Copper(II) and zinc(II) biosorption on Pinus sylvestris L. J Hazard Mater 161(2):1040–1045

    Article  CAS  Google Scholar 

  • Venkatesan G, Senthilnathan U, Rajam S (2014) Cadmium removal from aqueous solutions using hybrid eucalyptus wood based activated carbon: adsorption batch studies. Clean Technol Environ Policy 16(1):195–200

    Article  CAS  Google Scholar 

  • Xu W, Diwekar U (2005) Improved genetic algorithms for deterministic optimization and optimization under uncertainty. Part II. Solvent selection under uncertainty. Ind Eng Chem Res 44:7138–7146

    Article  CAS  Google Scholar 

  • Yamamoto H, Tochigi K (2008) Computer-aided molecular design to select foaming agents using a neural network method. Ind Eng Chem Res 47:5152–5156

    Article  CAS  Google Scholar 

  • Zecchin A, Simpson A, Maier H, Leonard M, Roberts A, Berrisford M (2006) Application of two ant colony optimization algorithms to water distribution system optimization. Math Comput Model 44:451–468

    Article  Google Scholar 

  • Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221:155–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila M. Diwekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Gebreslassie, B. & Diwekar, U.M. Design of novel polymeric adsorbents for metal ion removal from water using computer-aided molecular design. Clean Techn Environ Policy 19, 483–499 (2017). https://doi.org/10.1007/s10098-016-1236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1236-6

Keywords

Navigation