Skip to main content

Advertisement

Log in

Photocatalytic CO2 conversion over Au/TiO2 nanostructures for dynamic production of clean fuels in a monolith photoreactor

  • OriginalPaper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Global economic development intensifies the consumption of fossil fuels which results in increase of carbon dioxide (CO2) concentration in the atmosphere. The technologies for carbon capture and utilization to produce cleaner fuels are of great significance. However, phototechnology provides one perspective for economical CO2 conversion to cleaner fuels. In this study, CO2 conversion with H2 to selective fuels over Au/TiO2 nanostructures using environment friendly continuous monolith photoreactor has been investigated. Crystalline nanoparticles of anatase TiO2 were obtained in the Au-doped TiO2 samples. The Au deposited over TiO2 in metal state produced plasmonic resonance. CO2 was efficiently converted to CO as the main product over Au/TiO2 with a maximum yield rate of 4144 µmol g-catal.−1 h−1, 345 fold-higher than using un-doped TiO2 catalyst. The significantly enhanced photoactivity of Au/TiO2 catalyst was due to hindered charges recombination rate and Au metallic-interband transition. The photon energy in the UV range was high enough to excite the d-band electronic transition in the Au to produce CO, CH4, and C2H6. The quantum efficiency over Au/TiO2 catalyst for CO was considerably improved in the continuous monolith photoreactor. At higher space velocity, the yield rates of CO gradually reduced, but the initial rates of hydrocarbon yields increased. The stability of the recycled Au/TiO2 catalyst was sustained in cyclic runs. Thus, Au-doped TiO2 supported over monolith channels is promising for enhanced CO2 photoreduction to high energy products. This provides pathway that phototechnology to be explored further for cleaner and economical fuels production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bonet-Ruiz A-E, Plesu V, Bonet J, Iancu P, Llorens J (2015) Preliminary technical feasibility analysis of carbon dioxide absorption by ecological residual solvents rich in ammonia to be used in fertigation. Clean Technol Environ Policy 17:1313–1321

    Article  CAS  Google Scholar 

  • Cao Q, Yu Q, Connell DW, Yu G (2013) Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Technol Environ Policy 15:871–880

    Article  CAS  Google Scholar 

  • Cybula A, Klein M, Zaleska A (2015) Methane formation over TiO2-based photocatalysts: reaction pathwaysl. Appl. Cata B 164:433–442

    Article  CAS  Google Scholar 

  • Gui MM, Wong WMP, Chai SP, Mohamed AR (2015) One-pot synthesis of Ag-MWCNT@TiO2 core-shell nanocomposites for photocatalytic reduction of CO2 with water under visible light irradiation. Chem Eng J 278:272–278

    Article  CAS  Google Scholar 

  • Hasaneen R, Elsayed NA, Barrufet MA (2014) Analysis of the technical, microeconomic, and political impact of a carbon tax on carbon dioxide sequestration resulting from liquefied natural gas production. Clean Technol Environ Policy 16:1597–1613

    Article  CAS  Google Scholar 

  • Hou W, Hung WH, Pavaskar P et al (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936

    Article  CAS  Google Scholar 

  • Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma GL (2010) Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J Mol Catal A Chem 327:51–57

    Article  CAS  Google Scholar 

  • Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639

    Article  CAS  Google Scholar 

  • Li M, Zhang L, Fan X et al (2015) Highly selective CO2photoreduction to CO over g-C3N4/Bi2WO6composites under visible light. J Mater Chem A 3:5189–5196

    Article  CAS  Google Scholar 

  • Liou P-Y, Chen S-C, Wu JCS et al (2011) Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ Sci 4:1487

    Article  CAS  Google Scholar 

  • Liu E, Qi L, Bian J et al (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209

    Article  CAS  Google Scholar 

  • Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774

    Article  CAS  Google Scholar 

  • Low J, Cheng B, Yu J, Jaroniec M (2016) Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. Energy Storage Mater 3:24–35

    Article  Google Scholar 

  • Mei B, Pougin A, Strunk J (2013) Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons. J Catal 306:184–189

    Article  CAS  Google Scholar 

  • Mendes L, de Medeiros JL, Alves RMB, Araújo OOF (2014) Production of methanol and organic carbonates for chemical sequestration of CO2 from an NGCC power plant. Clean Technol Environ Policy 16:1095–1105

    CAS  Google Scholar 

  • Mulka R, Szulczewski W, Szlachta J, Prask H (2015) The influence of carbon content in the mixture of substrates on methane production. Clean Technol Environ Policy 18:807–815

    Article  Google Scholar 

  • Neatu S, Macia-Agullo JA, Concepcion P, Garcia H (2014a) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976

    Article  CAS  Google Scholar 

  • Neatu S, Macia-Agullo JA, Garcia H (2014b) Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts. Int J Mol Sci 15:5246–5262

    Article  Google Scholar 

  • Ola O, Maroto-Valer MM (2014) Copper based TiO2 honeycomb monoliths for CO2 photoreduction. Catal Sci Technol 4:1631–1637

    Article  CAS  Google Scholar 

  • Paulino PN, Salim VMM, Resende NS (2016) Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Appl Catal B Environ 185:362–370

    Article  CAS  Google Scholar 

  • Rani S, Bao N, Roy SC (2014) Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes. Appl Surf Sci 289:203–208

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Sim LC, Leong KH, Saravanan P, Ibrahim S (2015) Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Appl Surf Sci 358:122–129

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2013) Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl Catal A Gen 467:483–496

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2015a) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B Environ 162:98–109

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2015b) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A Gen 493:90–102

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2016) Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem Eng J 285:635–649

    Article  CAS  Google Scholar 

  • Tahir B, Tahir M, Amin NS (2015a) Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor. Appl Surf Sci 338:1–14

    Article  CAS  Google Scholar 

  • Tahir B, Tahir M, Amin NS (2015b) Performance analysis of monolith photoreactor for CO2 reduction with H2. Energy Convers Manage 90:272–281

    Article  CAS  Google Scholar 

  • Tahir M, Tahir B, Amin NAS (2015c) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299

    Article  CAS  Google Scholar 

  • Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354

    Article  CAS  Google Scholar 

  • Upadhye AA, Ro I, Zeng X et al (2015) Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catal Sci Technol 5:2590–2601

    Article  CAS  Google Scholar 

  • Wang C, Astruc D (2014) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216

    Article  CAS  Google Scholar 

  • Wang J-J, Jing Y-H, Ouyang T, Zhang Q, Chang C-T (2015a) Photocatalytic reduction of CO2 to energy products using Cu–TiO2/ZSM-5 and Co–TiO2/ZSM-5 under low energy irradiation. Catal Commun 59:69–72

    Article  CAS  Google Scholar 

  • Wang Z, Jiang M, Qin J, Zhou H, Ding Z (2015b) Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys Chem Chem Phys 17:16040–16046

    Article  CAS  Google Scholar 

  • Wang Z, Teramura K, Huang Z et al (2016) Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2with H2O through the modification of Ag-loaded Ga2O3with a ZnGa2O4layer. Catal Sci, Technol

    Google Scholar 

  • Zhao C, Krall A, Zhao H, Zhang Q, Li Y (2012) Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. Int J Hydrogen Energy 37:9967–9976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their deepest appreciation to the Ministry of Higher Education (MOHE), Malaysia and Universiti Teknologi Malaysia for the financial support of this research under NanoMITE LRGS (Long-term Research Grant Scheme, Vot 4L839) and Flagship RUG (Flagship Research University Grant, Vot 02G14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Aishah Saidina Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, B., Tahir, M. & Amin, N.A.S. Photocatalytic CO2 conversion over Au/TiO2 nanostructures for dynamic production of clean fuels in a monolith photoreactor. Clean Techn Environ Policy 18, 2147–2160 (2016). https://doi.org/10.1007/s10098-016-1181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1181-4

Keywords

Navigation