Skip to main content
Log in

Environment-friendly reactive dyeing process for cotton to substitute dyeing additives

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

An attempt has been taken to reformulate the dyeing process of cotton fabric with the aim of reducing the environmental pollution with economic advantages by the substitution of harmful chemical auxiliaries with ethanol at low concentration. The results were studied in comparison with the standard conventional recipe, and a favorable effect of alcohol addition, at 1–3 g/L, on the dye uptake, equilibrium time of isothermal dyeing was achieved in laboratory scale. Fastness properties and dyeing levelness were also compared. Color fastness to wash and rubbing were found to be unaffected with better levelness of dyeing by the introduction of ethanol in the reactive dyeing recipe of cotton. Ethanol replaced dyeing auxiliaries successfully by serving the function of both wetting and leveling agent where it is readily biodegradable, and hence, this process becomes eco-friendly. Finally, environmental and economic issues arising from chemical substitution of dyeing additives with ethanol were considered, and environmental advantages and cost saving due to the application of ethanol in comparison with dyeing auxiliaries were brought to light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akkaya G, Uzun İ, Güzel F (2007) Kinetics of the adsorption of reactive dyes by chitin. Dye Pigment 73:168–177. doi:10.1016/j.dyepig.2005.11.005

    Article  CAS  Google Scholar 

  • Amato M (1986) Adsorption isotherms on cotton of direct sky blue FF from aqueous ethanolic solutions. Dye Pigment 7:1–12. doi:10.1016/0143-7208(86)87001-2

    Article  CAS  Google Scholar 

  • Andrady AL (2003) An environmental primer. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 32–50

    Chapter  Google Scholar 

  • Aratono M, Toyomasu T, Villeneuve M et al (1997) Thermodynamic study on the surface formation of the mixture of water and ethanol. J Colloid Interface Sci 191:146–153. doi:10.1006/jcis.1997.4929

    Article  CAS  Google Scholar 

  • Arivithamani N, Agnes Mary S, Senthil Kumar M, Giri Dev V (2014) Keratin hydrolysate as an exhausting agent in textile reactive dyeing process. Clean Technol Environ Policy 16:1207–1215. doi:10.1007/s10098-014-0718-7

    Article  CAS  Google Scholar 

  • Bide M (2007) Environmentally responsible dye application. In: Christie RM (ed) Environmental aspects of textile dyeing, 1st edn. Woodhead Publishing Limited, Cambridge, pp 87–88

    Google Scholar 

  • Burikov S, Dolenko T, Patsaeva S et al (2010) Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol Phys 108:2427–2436. doi:10.1080/00268976.2010.516277

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Kabambe O (2011) Attempts to reduce water and chemical usage in the removal of bifunctional reactive dyes from cotton: part 2 bis(vinyl sulfone), aminochlorotriazine/vinyl sulfone and bis(aminochlorotriazine/vinyl sulfone) dyes. Dye Pigment 88:220–229. doi:10.1016/j.dyepig.2010.07.001

    Article  CAS  Google Scholar 

  • Butcher BH, Cussler EL (1972) Acid dye diffusion in solvent–assisted dyeing. J Soc Dye Colour 88:398–400. doi:10.1111/j.1478-4408.1972.tb03047.x

    Article  CAS  Google Scholar 

  • EC (2003) Integrated pollution prevention and control (IPPC) reference document on best available techniques for the textiles industry. www.eippcb.jrc.ec.europa.eu/reference/BREF/txt_bref_0703.pdf. Accessed 1 Jun 2015

  • Ferrero F, Periolatto M, Rovero G, Giansetti M (2011) Alcohol-assisted dyeing processes: a chemical substitution study. J Clean Prod 19:1377–1384. doi:10.1016/j.jclepro.2011.04.008

    Article  CAS  Google Scholar 

  • Fu C, Wang J, Shao J et al (2014) A non-aqueous dyeing process of reactive dye on cotton. J Text Inst 106:152–161. doi:10.1080/00405000.2014.906103

    Article  CAS  Google Scholar 

  • Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dye Pigment 52:69–78. doi:10.1016/S0143-7208(01)00078-X

    Article  CAS  Google Scholar 

  • Gunasekaran R, Kanmani S (2014) Performance of gas chlorination in decolourization of textile dyeing wastewater: a pilot study. Clean Technol Environ Policy 16:601–607. doi:10.1007/s10098-013-0656-9

    Article  CAS  Google Scholar 

  • Hang C, He J (2014) Study of the desorption of hydrolysed reactive dyes from cotton fabrics in an ethanol-water solvent system. Color Technol 130:81–85. doi:10.1111/cote.12066

    Article  CAS  Google Scholar 

  • Hendrickx I, Boardman GD (1995) Pollution prevention studies in the textile wet processing industry. Virginia, USA

  • International Trade Centre UNCTAD/WTO (2007) Cotton Exporter’s guide. Geneva, Switzerland

  • Kanagaraj J, Senthilvelan T, Panda RC (2015) Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technol Environ Policy 17:1443–1456. doi:10.1007/s10098-014-0869-6

    Article  CAS  Google Scholar 

  • Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57. doi:10.1016/j.jclepro.2014.09.017

    Article  CAS  Google Scholar 

  • King D (2007) Dyeing of cotton and cotton products. In: Gordon S, Hsieh YL (eds) Cotton: science and technology. Woodhead Publishing Ltd., Cambridge, pp 353–377

    Chapter  Google Scholar 

  • Kranz PB, R T, III W, Randall PM (1993) Replacement of hazardous material in wide web flexographic printing process. Ohio, USA

  • Nazari A, Montazer M, Afzali F, Sheibani A (2014a) Optimization of proteases pretreatment on natural dyeing of wool using response surface methodology. Clean Technol Environ Policy 16:1081–1093. doi:10.1007/s10098-013-0709-0

    Article  CAS  Google Scholar 

  • Nazari A, Montazer M, Dehghani-Zahedani M (2014b) Simultaneous dyeing and mothproofing of wool against Dermestes Maculatus with madder optimized by statistical model. Clean Technol Environ Policy 16:1675–1686. doi:10.1007/s10098-014-0745-4

    Article  CAS  Google Scholar 

  • OECD SIDS (2004) ETHANOL. www.inchem.org/documents/sids/sids/64175.pdf. Accessed 1 Jun 2015

  • Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) A chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17:239–247. doi:10.1016/j.jclepro.2008.05.001

    Article  CAS  Google Scholar 

  • Sadeghi-Kiakhani M, Safapour S (2015) Eco-friendly dyeing of treated wool fabrics with reactive dyes using chitosanpoly(propylene imine)dendreimer hybrid. Clean Technol Environ Policy 17:1019–1027. doi:10.1007/s10098-014-0855-z

    Article  CAS  Google Scholar 

  • Schramm W, Jantschgi J (1999) Comparative assessment of textile dyeing technologies from a preventive environmental protection point of view. Color Technol 115:130–135. doi:10.1111/j.1478-4408.1999.tb00310.x

    Article  CAS  Google Scholar 

  • Smith B (1986) Identification and reduction of pollution sources in textile wet processing. Raleigh, USA

  • Smith KJ (1997) Colour-order systems, colour spaces, colour difference and colour scales. In: McDonald Roderick (ed) Color Research & Application, 2nd edn. Society of Dyers and Colourists, Bradford, pp 121–297

    Google Scholar 

  • T Townsend (2007) Controlling costs in cotton production. In: S. Gordon and Y-L. Hsieh (ed) Cotton: Science and technology, 1st edn. Woodhead Publishing Limited, Cambridge, pp 425–426

  • Treigienė R, Musnickas J (2003) Influence of nonionic surfactant on wool fiber dyeing thermodynamics and kinetics parameters. Chemija 14:145–150

    Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302. doi:10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#

    Article  CAS  Google Scholar 

  • Weinrach J (2002) Pollution prevention and waste minimization—back to basics. In: Ghassemi A (ed) Handbook of pollution control and waste minimization. Marcel Dekker Inc, New York, pp 23–30

    Google Scholar 

  • Yakubu MK, Gumel SM, Ogbose LO, Adekunlel AT (2006) Pretreatment of cotton fibres with alcohols to optimize dye uptake. Casp J Env Sci 4:39–44

    Google Scholar 

  • Zhang Y, Zhang W (2015) Clean dyeing of cotton fiber using a novel nicotinic acid quaternary triazine cationic reactive dye: salt-free, alkali-free, and non-toxic by-product. Clean Technol Environ Policy 17:563–569. doi:10.1007/s10098-014-0821-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tajul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.T. Environment-friendly reactive dyeing process for cotton to substitute dyeing additives. Clean Techn Environ Policy 18, 601–608 (2016). https://doi.org/10.1007/s10098-015-1035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1035-5

Keywords

Navigation