Skip to main content

Advertisement

Log in

Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The present paper investigated the technical possibilities of bioethanol production from coffee pulp in a sustainable manner. Coffee pulp is a largely underutilized waste stream and has the potential to become a bioethanol feedstock if processing is economically viable. This study aimed to characterize the chemical composition of coffee pulp with relevance to bioethanol production and to compare results to other bioethanol feedstocks. Based on the total sugar yield, we investigated bioethanol production using AspenPlus simulation software. In the sugar characterization part, total carbohydrates were measured after complete acid hydrolysis of dry pulp, while water-soluble carbohydrates were measured after acid hydrolysis of soxhlet extracted solutions. Moisture, lignin, and ash contents were measured gravimetrically after appropriate heating treatments. The results showed sugar contents, expressed as percentages of dry mass, as follows: 5.8, 5.2, 20.2, 4.2, and 4.7 % for arabinose, galactose, glucose, xylose, and mannose, respectively. Arabinose, galactose, and glucose were the only water-extracted simple sugars, at 1.0, 1.4, and 2.6 % of dry mass, respectively. AspenPlus simulation was based on processing 10,000 ton/day of coffee pulp. The results demonstrated sugar and ethanol yield of 2100 and 1050 ton/day, respectively. This would make annually profit of $0.13 million. The simulation estimated the capital investment cost was about $2 million. In order to satisfy the process economy, the process operation cost must be operated at minimum of $1.87 million annually. The life-cycle analysis showed the net value of energy of the whole process is an economical as well as the balance of CO2 emission/reduction was on the environmental favor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkasrawi M, Rudolf A, Lidén G, Zacchi G (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 38:279–286

    Article  CAS  Google Scholar 

  • Alkasrawi M, Abu Jrai A, Al-Muhtaseb AH (2013) Simultaneous saccharification and fermentation process for ethanol production from steam-pretreated softwood: recirculation of condensate streams. Chem Eng J 225:574–579. doi:10.1016/j.cej.2013.04.014

    Article  CAS  Google Scholar 

  • Alzate CAC, Toro OJS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2447–2459

    Article  Google Scholar 

  • Anthony F, Combes C, Astorga C, Bertrand B, Graziosi G, Lashermes P (2002) The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers TAG Theoretical and applied genetics. Theoretische und angewandte Genetik 104:894–900. doi:10.1007/s00122-001-0798-8

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. doi:10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  • Bonilla-Hermosa VA, Duarte WF, Schwan RF (2014) Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour Technol 166:142–150. doi:10.1016/j.biortech.2014.05.031

    Article  CAS  Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25. doi:10.1007/s00253-004-1819-8

    Article  CAS  Google Scholar 

  • Caetano N, Silva VM, Melo A, Martins A, Mata T (2014) Spent coffee grounds for biodiesel production and other applications. Clean Technol Environ Policy 16:1423–1430. doi:10.1007/s10098-014-0773-0

    Article  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476. doi:10.1016/j.rser.2011.11.035

    Article  CAS  Google Scholar 

  • Corro G, Paniagua L, Pal U, Bañuelos F, Rosas M (2013) Generation of biogas from coffee-pulp and cow-dung co-digestion: infrared studies of postcombustion emissions. Energy Convers Manag 74:471–481. doi:10.1016/j.enconman.2013.07.017

    Article  CAS  Google Scholar 

  • de Jong E, Gosselink RJA (2014) Lignocellulose-based chemical products. In: Gupta VK, Kubicek MGTP, Xu JS (eds) Bioenergy research: advances and applications, vol 17. Elsevier, Amsterdam, pp 277–313. doi:10.1016/B978-0-444-59561-4.00017-6

    Chapter  Google Scholar 

  • Festel G, Würmseher M, Rammer C, Boles E, Bellof M (2014) Modelling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66:242–253. doi:10.1016/j.jclepro.2013.10.038

    Article  Google Scholar 

  • Gabriel K, El-Halwagi M (2013) Modeling and optimization of a bioethanol production facility. Clean Technnol Environ Policy 15:931–944. doi:10.1007/s10098-013-0584-8

    Article  Google Scholar 

  • Gaykawad SS, Zha Y, Punt PJ, van Groenestijn JW, van der Wielen LAM, Straathof AJJ (2013) Pervaporation of ethanol from lignocellulosic fermentation broth. Bioresour Technol 129:469–476. doi:10.1016/j.biortech.2012.11.104

    Article  CAS  Google Scholar 

  • Giannetti BF, Ogura Y, Bonilla SH, Almeida C (2011) Accounting emergy flows to determine the best production model of a coffee plantation. Energy Policy 39:7399–7407. doi:10.1016/j.enpol.2011.09.005

    Article  Google Scholar 

  • Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991. doi:10.1016/j.biortech.2010.02.009

    Article  CAS  Google Scholar 

  • Groode TA, Heywood JB (2007) Ethanol: a look ahead. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Hughes SR et al (2014) Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl Microbiol Biotechnol 98:8413–8431. doi:10.1007/s00253-014-5991-1

    Article  CAS  Google Scholar 

  • Humbert S, Loerincik Y, Rossi V, Margni M, Jolliet O (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Clean Prod 17:1351–1358. doi:10.1016/j.jclepro.2009.04.011

    Article  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  Google Scholar 

  • Kim H-Y, Gwak K-S, Lee S-Y, Jeong H-S, Ryu K-O, Choi I-G (2012) Biomass characteristics and ethanol production of yellow poplar (Liriodendron tulipifera) treated with slurry composting and biofiltration liquid as fertilizer. Biomass Bioenergy 42:10–17. doi:10.1016/j.biombioe.2012.03.018

    Article  CAS  Google Scholar 

  • Kim TH, Choi CH, Oh KK (2013) Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation. Bioresour Technol 130:306–313. doi:10.1016/j.biortech.2012.11.125

    Article  CAS  Google Scholar 

  • Kotarska K, Świerczyńska A, Dziemianowicz W (2015) Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation: study on the decomposition of lignocellulosic biomass. Renew Energy 75:389–394. doi:10.1016/j.renene.2014.10.018

    Article  CAS  Google Scholar 

  • Kravanja P, Könighofer K, Canella L, Jungmeier G, Friedl A (2012) Perspectives for the production of bioethanol from wood and straw in Austria: technical, economic, and ecological aspects. Clean Technol Environ Policy 14:411–425. doi:10.1007/s10098-011-0438-1

    Article  CAS  Google Scholar 

  • Kravanja P, Modarresi A, Friedl A (2013) Heat integration of biochemical ethanol production from straw—a case study. Appl Energy 102:32–43. doi:10.1016/j.apenergy.2012.08.014

    Article  CAS  Google Scholar 

  • Kurian JK, Nair GR, Hussain A, Raghavan GSV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219

    Article  Google Scholar 

  • Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45. doi:10.1016/j.biombioe.2012.03.033

    Article  CAS  Google Scholar 

  • Luo L, van der Voet E, Huppes G (2009) An energy analysis of ethanol from cellulosic feedstock—corn stover. Renew Sustain Energy Rev 13:2003–2011

    Article  CAS  Google Scholar 

  • Lythcke-Jørgensen C, Haglind F, Clausen LR (2014) Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production. Energy Convers Manag 85:817–827. doi:10.1016/j.enconman.2014.01.018

    Article  Google Scholar 

  • McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. National Renewable Energy Laboratory Report

  • Menezes EG, do Carmo JR, Menezes AG, Alves JG, Queiroz F, Pimenta CJ (2013) Use of different extracts of coffee pulp for the production of bioethanol. Appl Biochem Biotechnol 169:673–687. doi:10.1007/s12010-012-0030-0

    Article  CAS  Google Scholar 

  • Menezes EG, do Carmo CR, Alves JG, Menezes AG, Guimaraes IC, Queiroz F, Pimenta CJ (2014) Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnol Prog 30:451–462. doi:10.1002/btpr.1856

    Article  CAS  Google Scholar 

  • Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sustain Energy Rev 42:1349–1361

    Article  CAS  Google Scholar 

  • Navia DP, Reinaldo de Velasco J, Hoyos C, Jose L (2011) Production and evaluation of ethanol from coffee processing by-products. Vitae 18:287–294

    Google Scholar 

  • Nikolić S, Mojović L, Rakin M, Pejin D, Pejin J (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13:587–594. doi:10.1007/s10098-011-0366-0

    Article  Google Scholar 

  • Oliveira LS, Franca AS (2015) An overview of the potential uses for coffee husks. In: Preedy VR (ed) Coffee in health and disease prevention, vol 31. Academic Press, San Diego, pp 283–291. doi:10.1016/B978-0-12-409517-5.00031-0

    Google Scholar 

  • Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJM (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173. doi:10.1016/j.biortech.2012.12.030

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162. doi:10.1016/S1369-703X(00)00084-X

    Article  CAS  Google Scholar 

  • Pessoa A, Mancilha IM, Sato S (1997) Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz J Chem Eng 14:291–297

    Article  CAS  Google Scholar 

  • Quintero JA, Moncada J, Cardona CA (2013) Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour Technol 139:300–307. doi:10.1016/j.biortech.2013.04.048

    Article  CAS  Google Scholar 

  • Roger CP (1984) The chemical composition of wood. In: The chemistry of solid wood. Advances in chemistry. American chemical society, pp 57–126

  • Rojas JBU, Verreth JAJ (2003) Growth of Oreochromis aureus fed with diets containing graded levels of coffee pulp and reared in two culture systems. Aquaculture 217:275–283

    Article  Google Scholar 

  • Roussos S et al (1995) Biotechnological management of coffee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl Microbiol Biotechnol 42:756–762. doi:10.1007/BF00171958

    Article  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  • Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96:537–544. doi:10.1016/j.biortech.2004.06.019

    Article  CAS  Google Scholar 

  • Sanchez A, Gomez D (2014) Analysis of historical total production costs of cellulosic ethanol and forecasting for the 2020-decade. Fuel 130:100–104. doi:10.1016/j.fuel.2014.04.037

    Article  CAS  Google Scholar 

  • Schwietzke S, Griffin WM, Matthews HS (2011) Relevance of emissions timing in biofuel greenhouse gases and climate impacts. Environ Sci Technol 45:8197–8203. doi:10.1021/es2016236

    Article  CAS  Google Scholar 

  • Shenoy D, Pai A, Vikas RK, Neeraja HS, Deeksha JS, Nayak C, Rao CV (2011) A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass Bioenergy 35:4107–4111. doi:10.1016/j.biombioe.2011.05.016

    Article  CAS  Google Scholar 

  • Sobrino FH, Monroy CR, Pérez JLH (2011) Biofuels and fossil fuels: life cycle analysis (LCA) optimisation through productive resources maximisation. Renew Sustain Energy Rev 15:2621–2628. doi:10.1016/j.rser.2011.03.010

    Article  Google Scholar 

  • Spatari S, Bagley DM, MacLean HL (2010) Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour Technol 101:654–667. doi:10.1016/j.biortech.2009.08.067

    Article  CAS  Google Scholar 

  • Sukumara S, Amundson J, Badurdeen F, Seay J (2015) A comprehensive techno-economic analysis tool to validate long-term viability of emerging biorefining processes. Clean Technol Environ Policy 1–14. doi:10.1007/s10098-015-0945-6

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44:540–545. doi:10.1016/j.procbio.2009.01.011

    Article  CAS  Google Scholar 

  • Tang M, Chin MS, Lim K, Mun Y, Ng RL, Tay DS, Ng DS (2013) Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol Environ Policy 15:783–799. doi:10.1007/s10098-013-0582-x

    Article  CAS  Google Scholar 

  • Teramoto Y, Lee S-H, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863. doi:10.1016/j.biortech.2008.04.049

    Article  CAS  Google Scholar 

  • Teramoto Y, Lee S-H, Endo T (2009) Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Bioresour Technol 100:4783–4789. doi:10.1016/j.biortech.2009.04.054

    Article  CAS  Google Scholar 

  • Urbaneja G, Ferrer J, Paez G, Arenas L, Colina G (1996) Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew Energy 9:1041–1044. doi:10.1016/0960-1481(96)88458-8

    Article  CAS  Google Scholar 

  • Wintgens JN (2009) Coffee: growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers. Wiley-Vch, Weinheim

    Google Scholar 

  • Wooley R, Putsche V (1996) Development of an ASPEN PLUS physical property database for biofuel components. Report NREL/MP-425-20685. National Renewable Laboratory, Golden

  • Zhao X, Song Y, Liu D (2011) Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. Enzyme Microbial Technol 49:413–419. doi:10.1016/j.enzmictec.2011.07.003

    Article  CAS  Google Scholar 

  • Zhu JY, Zhuang XS (2012) Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci 38:583–598. doi:10.1016/j.pecs.2012.03.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Alkasrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurram, R., Al-Shannag, M., Knapp, S. et al. Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Techn Environ Policy 18, 269–278 (2016). https://doi.org/10.1007/s10098-015-1015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1015-9

Keywords

Navigation