Skip to main content

Advertisement

Log in

Analysis of forest residual biomass potential for bioenergy production in Spain

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The current concern about the climate change and the need for sustainable alternatives to fossil fuels has moved the European Union to establish objectives regarding the environment and renewable energy sources by 2020. Forest biomass is an alternative energy resource with an important role in the fulfillment of these objectives. This paper analyzes the possibilities of its implementation in Spain. Forest biomass resources have been analyzed with the BIORAISE application. Potential biomass is mapped considering local collection nodes by province, as well as available biomass, total cost (the sum of harvesting and transport costs), and energetic content ratio of the available biomass. The results show that Huesca and Cuenca are the two provinces with the most available biomass, while Pontevedra and Vizcaya have the highest energetic content ratio. The average total cost of biomass in Spain is 72.72 €/o.d.t., which is lower than the average cost of the supply of pellets to Pellet plants in Europe. Baleares and Huelva are the provinces which have the lowest potential cost of forest biomass. Savings between 48 and 81 % can be obtained using the available forest biomass for domestic heating compared to the other main systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A c :

Surface of the circle that represents a province (km2)

b d :

Available forest biomass (o.d.t./year)

b db :

Available broadleaf biomass (o.d.t./year)

b dc :

Available conifer biomass (o.d.t./year)

b dm :

Available mix conifer–broadleaf biomass (o.d.t./year)

b p :

Potential forest biomass (o.d.t./year)

b pb :

Potential broadleaves biomass (o.d.t./year)

b pc :

Potential conifer biomass (o.d.t./year)

b pm :

Potential mix conifer–broadleaf biomass (o.d.t./year)

C :

Total cost (€/o.d.t./year)

CE:

Energetic content of forest biomass (GJ/year)

CEb :

Energetic content of broadleaves (GJ/year)

CEc :

Energetic content of conifers (GJ/year)

CEm :

Energetic content of mix conifers–broadleaves (GJ/year)

C h :

Harvesting cost of forest biomass (€/o.d.t.)

C hb :

Harvesting cost of broadleaves (€/o.d.t.)

C hc :

Harvesting cost of conifers (€/o.d.t.)

C hm :

Harvesting cost of mix conifers–broadleaves (€/o.d.t.)

C t :

Transport cost of forest biomass (€/o.d.t.)

C tb :

Transport cost of broadleaves (€/o.d.t.)

C tc :

Transport cost of conifers (€/o.d.t.)

C tm :

Transport cost of mix conifers–broadleaves (€/o.d.t.)

LHVd :

Lower heating value of the available forest biomass (GJ/o.d.t.)

LHVdb :

Lower heating value of the available broadleaf biomass (GJ/o.d.t.)

LHVdc :

Lower heating value of the available conifer biomass (GJ/o.d.t.)

LHVdm :

Lower heating value of the available mix conifer–broadleaf biomass (GJ/o.d.t.)

o.d.t.:

Oven dry tons

R bd :

Available forest biomass ratio (o.d.t./km2year)

R CE :

Forest biomass energetic content ratio (GJ/km2year)

References

  • Bare JC (2013) Development of impact assessment methodologies for environmental sustainability. Clean Technol Environ Policy 16(4):681–690

    Article  Google Scholar 

  • Benjamin MFD, Tan RR, Razon LF (2014) A methodology for criticality analysis in integrated energy systems. Clean Technol Environ Policy 17(4):935–946

    Article  Google Scholar 

  • BIORAISE, Biomass GIS database (2014). http://bioraise.ciemat.es/bioraise/. Accessed Mar 2014

  • Čuček L, Lam HL, Klemeš JJ, Varbanov PS, Kravanja Z (2010) Synthesis of regional networks for the supply of energy and bioproducts. Clean Technol Environ Policy 12(6):635–645

    Article  Google Scholar 

  • De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34(2):188–202. doi:10.1016/j.biombioe.2009.07.011

    Article  Google Scholar 

  • Esteban LS, Carrasco JE (2011) Biomass resources and cost: assessment in different EU countries. Biomass Bioenergy 35(1):S21–S30. doi:10.1016/j.biombioe.2011.03.045

    Article  Google Scholar 

  • Esteban LS, Ciria MP, Carrasco JE (2008) An assessment of relevant methodological elements and criteria for surveying sustainable agricultural and forestry biomass by-products for energy purposes. BioResources 3(3):910–928

    Google Scholar 

  • García-Maraver A, Zamorano M, Ramos-Ridao A, Díaz LF (2012) Analysis of olive grove residual biomass potential for electric and thermal energy generation in Andalusia (Spain). Renew Sustain Energy Rev 16(1):745–751. doi:10.1016/j.rser.2011.08.040

    Article  Google Scholar 

  • Gómez A, Rodrigues M, Montañés C, Dopazo C, Fueyo N (2010) The potential for electricity generation from crop and forestry residues in Spain. Biomass Bioenergy 34(5):703–719. doi:10.1016/j.biombioe.2010.01.013

    Article  Google Scholar 

  • Instituto de Recursos Naturales y Ordenación del Territorio de la Universidad de Oviedo, INDUROT (2011) Estrategia Regional de aprovechamiento sostenible de la biomasa forestal del Principado de Asturias. Oviedo, Spain

  • Instituto para la diversificación y ahorro de energía (IDAE) (2007) Energía de la Biomasa. Madrid, Spain

  • Instituto para la diversificación y ahorro de energía (IDAE) (2011) Plan de Energías Renovables (PER) 2011–2020. Madrid, Spain. http://www.idae.es/uploads/documentos/documentos_11227_PER_2011-2020_def_93c624ab.pdf

  • Instituto para la diversificación y ahorro de energía (IDAE) (2013) Consumos del sector residencial en España. Resumen de información básica http://www.idae.es/uploads/documentos/documentos_Documentacion_Basica_Residencial_Unido_c93da537.pdf

  • Instituto para la diversificación y ahorro de energía (IDAE) (2014) Informe Estadístico de Energías Renovables. http://informeestadistico.idae.es/t1.htm

  • International bioenergy 18 (2013). www.bioenergyinternational.es

  • Long H, Li X, Wang H, Jia J (2013) Biomass resources and their bioenergy potential estimation: a review. Renew Sustain Energy Rev 26:344–352

    Article  Google Scholar 

  • Ministerio de Industria, Energía y Turismo (MINETUR) (2010) Plan de Acción Nacional de Energías Renovables (PANER) 2011–2020. Madrid, Spain

  • Ministerio de Industria, Energía y Turismo (MINETUR) (2013) Informe anual de precios de carburantes y combustibles. Comparación 2012–2013. Madrid, Spain

  • Monteiro E, Mantha V, Rouboa A (2012) Portuguese pellets market: analysis of the production and utilization constrains. Energy Policy 42:129–135

    Article  Google Scholar 

  • Nagy K, Körmendi K (2012) Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”. Appl Energy 96:393–399. doi:10.1016/j.apenergy.2012.02.066

    Article  Google Scholar 

  • Natarajan K, Leduc S, Pelkonen P, Tomppo E, Dotzauer E (2014) Optimal locations for second generation Fischer Tropsch biodiesel production in Finland. Renew Energy 62:319–330

    Article  CAS  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2012) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845. doi:10.1007/s10098-013-0675-6

    Article  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2014) Energy production from biomass and its relevance to urban planning and compatibility assessment: two applicative cases in Italy. Clean Technol Environ Policy A:1–14

    Google Scholar 

  • Paredes-Sánchez JP, Xiberta-Bernat J (2010) Bioenergía: Los biocombustibles sólidos densificados (BSD’s) (Bioenergy: “Densified Solid Biofuels” (DSB’s)). In: Actas de Conferencia ATEGRUS sobre Bioenergía, Biomasa, Biocombustibles y Biogás. ATEGRUS, Valladolid, Spain (in Spanish)

  • Paredes-Sánchez JP, Gutiérrez Trashorras AJ, González-Caballín JM (2013) Bio-smartcity: biomass supply to a smartcity: a case study. In: New concepts in smart cities: fostering public and private alliances (SmartMILE), 2013 international conference. doi: 10.1109/SmartMILE.2013.6708171

  • Paredes-Sánchez JP, Gutiérrez-Trashorras AJ, Xiberta-Bernat J (2014) Energy potential of residue from wood transformation industry in the central metropolitan area of the Principality of Asturias (northwest Spain). Waste Manag Res 32(3):241–244. doi:10.1177/0734242X13520064

    Article  Google Scholar 

  • Paredes-Sánchez JP, Gutiérrez-Trashorras AJ, Xiberta-Bernat J (2015) Wood residue to energy from forests in the Central Metropolitan Area of Asturias (NW Spain). Urban For Urban Green 14(2):195–199

    Article  Google Scholar 

  • Plataforma Tecnológica Española de la Biomasa (BioPlat) (2013) Pélets de biomasa en España. Madrid, Spain

  • REE (Red Eléctrica de España) Precios de venta de la electricidad 2014. http://www.esios.ree.es/pvpc/

  • Rivera-Tinoco R, Bouallou C (2010) Using biomass as an energy source with low CO2 emissions. Clean Technol Environ Policy 12(2):171–175. doi:10.1007/s10098-009-0241-4

    Article  CAS  Google Scholar 

  • Rorstad PK, Trømborg E (2010) Bioenergy in Norway-frame conditions and markets, Workshop: biomass resources and bioenergy in Norway and other Nordic countries, Oslo. http://re.jrc.ec.europa.eu/biof/html/bioenergynordiccountries.htm

  • Rosillo-Calle F, Hemstock S, De Groot P, Woods J (2007) The Biomass Assessment Handbook. Earthscan, London

    Google Scholar 

  • Ruiz-Romero S, Colmenar-Santos A, Castro-Gil MA (2012) EU plans for renewable energy. An application to the Spanish case. Renew Energy 43:322–330. doi:10.1016/j.renene.2011.11.033

    Article  Google Scholar 

  • Scarlat N, Dallemand JF, Skjelhaugen OJ, Asplund D, Nesheim L (2011) An overview of the biomass resource potential of Norway for bioenergy use. Renew Sustain Energy Rev 15(7):3388–3398

    Article  Google Scholar 

  • Schneider LC, Kinzig AP, Larson ED, Solórzano LA (2001) Method for spatially explicit calculations of potential biomass yields and assessment of land availability for biomass energy production in Northeastern Brazil. Agric Ecosyst Environ 84(3):207–226. doi:10.1016/S0167-8809(00)00242-5

    Article  Google Scholar 

  • Sukumara S, Faulkner W, Amundson J, Badurdeen F, Seay J (2014) A multidisciplinary decision support tool for evaluating multiple biorefinery conversion technologies and supply chain performance. Clean Technol Environ Policy 16(6):1027–1044

    Article  CAS  Google Scholar 

  • Trømborg E, Ranta T, Schweinle J et al (2013) Economic sustainability for wood pellets production – A comparative study between Finland, Germany, Norway, Sweden and the US. Biomass Bioenergy 57:68–77. doi:10.1016/j.biombioe.2013.01.030

    Article  Google Scholar 

  • Ubando AT, Culaba AB, Aviso KB, Ng DK, Tan RR (2014) Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions. Clean Technol Environ Policy 16(8):1537–1549

    Article  CAS  Google Scholar 

  • Ubeda-Delgado J, Antolín-Giraldo G (1995) Energy possibilities from forest residues in the region of Castilla y León in Spain. Biomass Bioenergy 8(1):21–28. doi:10.1016/0961-9534(94)E0030-V

    Article  Google Scholar 

  • Vinodh S, Jayakrishna K, Kumar V, Dutta R (2014) Development of decision support system for sustainability evaluation: a case study. Clean Technol Environ Policy 16(1):163–174

    Article  Google Scholar 

  • WEBENERGIA (2013) http://preciogas.com/evolucion/precio-kwh

  • Yoshioka T, Sakurai R, Aruga K, Sakai H, Kobayashi H, Inoue K (2011) A GIS-based analysis on the relationship between the annual available amount and the procurement cost of forest biomass in a mountainous region in Japan. Biomass Bioenergy 35(11):4530–4537

    Article  Google Scholar 

  • Ziolkowska JR (2013) Evaluating sustainability of biofuels feedstocks : a multi-objective framework for supporting decision making. Biomass Bioenergy 59:425–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio José Gutiérrez Trashorras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turrado Fernández, S., Paredes Sánchez, J.P. & Gutiérrez Trashorras, A.J. Analysis of forest residual biomass potential for bioenergy production in Spain. Clean Techn Environ Policy 18, 209–218 (2016). https://doi.org/10.1007/s10098-015-1008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1008-8

Keywords

Navigation