Skip to main content
Log in

Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) modified with proper compounds are now gaining much attention for their function as new adsorbents for environmental remediation. The main objective of this study is to determine the effectiveness of modified nanoparticles (MNPs) as sorbents in removing Cd+2, Cu+2, and Ni+2 from single and competitive solutions by TiO2 NPs modified with humic acid (Ti–H), extractant of Walnut shell (Ti–W), and 1, 5 diphenyl-Carbazon (Ti–C). MNPs were characterized by XRD, FT-IR, and SEM–EDX analyzer. The MNPs were spherical in shape. The mean diameter of MNPs was determined to be 64.7 nm. The sorption of Cd+2 and Cu+2 on MNPs fitted better in Langmuir model than Freundlich model. But Ni+2 sorption better fitted in Freundlich model. Kinetics of adsorption follow pseudo-second order kinetic model than pseudo-first-order kinetic model. The adsorption maximum was observed at pH 7. Adsorption capacities of MNPs were obtained from Langmuir model and final point of isotherm. Comparison with published adsorption capacities for other adsorbents indicated that Ti–W and Ti–C had potential as proper adsorbents for the removal of Cd+2 and Cu+2 from single and competitive aqueous solution and Ti–H was a good candidate for Ni+2 removal from single and competitive solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664

    Article  CAS  Google Scholar 

  • Alvarez-Ayuso E, Garcı´a-Sa´nchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862

    Article  CAS  Google Scholar 

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    Article  CAS  Google Scholar 

  • Baraton MI, Merhari L (2004) Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties. J Eur Ceram Soc 24:399–1404

    Article  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2013) Cadmium (Cd2+) removal by nano zero-valent iron: surface analysis, effects of solution chemistry and surface complexation modeling. Environ Sci Pollut Res 20:6210–6221

    Article  CAS  Google Scholar 

  • Chappell MA (2009) Nanomaterials: risks and benefits, I. Linkov and J. Steevens (eds.), 111 ©Springer Science + Business Media B.V

  • Chen Q, Yin D, Zhu S, Hu X (2012) Adsorption of Cadmium (II) on humic acid coated Titanium dioxide. J Colloid Interface Sci 367:241–248

    Article  CAS  Google Scholar 

  • Chen J, Hao Y, Chen M (2014) Rapid and efficient removal of Ni2+ from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles. Environ Sci Pollut Res 21:1671–1679

    Article  CAS  Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb2+, Cd2+, Cu2+, Zn2+, and Ni2+ to Titanium dioxide nanoparticles: effect of particles size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395

    Article  CAS  Google Scholar 

  • Foo LPY, Tee CZ, Raimy NR, Hassell DG, Lee LY (2012) Potential Malaysia agricultural waste materials for the biosorption of cadmium (II) from aqueous solution. Clean Technol Environ Policy 14:273–280

    Article  CAS  Google Scholar 

  • Guo XY, Zhang SZ, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 15:134–142

    Article  Google Scholar 

  • Gupta RK, Nayak A (2012) Cadmium Removal and recovery from aqueous solution by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Hammaini A, Gonzalez F, Ballester A, Bla´ zquez ML, Mun˜ oz JA (2007) Biosorption of heavy metals by activated sludge and their desorption characteristics. J Environ Manag 84:419–426

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Jalbani N, Soylak M (2014) Ligandless surfactant mediated solid phase extraction combined with Fe3O4 nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy. Ecotoxicol Environ Saf 102:174–178

    Article  CAS  Google Scholar 

  • Jaman H, Chakraborty D (2009) a study of the thermodynamics and kinetics of Copper adsorption using chemically modified rice husk. Clean Technol Environ Policy 37:704–711

    CAS  Google Scholar 

  • Kim JW, Sohn MH, Kim DS, Sohn SM, Kwon YS (2001) Production of granular activated carbon from waste walnnt shell and its adsorption characteristics of Cu2+ ion. J Hazard Mater 85(3):301–315

  • Lai YL, Thirumavalavan M, Lee JF (2010) Effective adsorption of heavy metal ions (Cu2+, Pb2+, and Zn2+) from aqueous solution by immobilization of adsorbents on Ca-alginate beads. Toxicol Environ Chem 92:697–705

    Article  CAS  Google Scholar 

  • Lee YC, Yang JW (2012) Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem 18:1178–1185

    Article  CAS  Google Scholar 

  • Liu W, Sun W, Han Y, Ahmad Muhammad, Ni Jinren (2014) Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesizedvia hydrothermal method under different NaOH concentrations: role of sodium content. Colloid Surf A 452:138–147

    Article  CAS  Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J Nanopart Res 14:1–18

    Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470

    Article  CAS  Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2015) Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 17:85–102

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2005) Ni (II) removal from aqueous solution using tea factory waste. J Hazard Mater 127:120–128

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2006) Ni (II) removal from aqueous solutions using cone biomass of Thuja orientalis. J Hazard Mater 137:899–908

    Article  CAS  Google Scholar 

  • Meyi HY, Man C, Bo HZ (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184:392–399

    Article  Google Scholar 

  • Mosh TB, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  Google Scholar 

  • Pehlivan E, Cetin S, Yank BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater B135:193–199

    Article  Google Scholar 

  • Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–2010:193–198

    Article  Google Scholar 

  • PhuengPrasop T, Sittiwong J, Unob F (2011) Removal of heavy metals ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507

    Article  CAS  Google Scholar 

  • Pourreza N, Rastegarzadeh S, Larki A (2014) Nano-TiO2 modified with 2-mercaptobenzimidazole as an efficient adsorbent for removal of Ag(I) from aqueous solutions. J Ind Eng Chem 20:127–132

    Article  CAS  Google Scholar 

  • Shahbazi A, Younesi H, Badiei A (2014) Functionalized nanostructured silica by tetra dentate-amine chelating ligand as efficient heavy metals adsorbent : applications to industrial effluent treatment. Korean J Chem Eng 31:1598–1607

    Article  CAS  Google Scholar 

  • Sharma YC, Srivastava VU, Padhyay SN, Weng CH (2008) Alumina nanoparticles for the removal of Ni (II) from aqueous solution. Ind Eng Chem Res 47:8095–8100

    Article  CAS  Google Scholar 

  • Sica M, Duta A, Teodosiu C, Draghici C (2014) Thermodynamic and kinetic study on ammonium removal from a synthetic water solution using ion exchange resin. Clean Techn Environ Policy 16:351–359

    Article  CAS  Google Scholar 

  • Tan Y, Chen M, Hao Y (2012) High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem Eng J 191:104–111

    Article  CAS  Google Scholar 

  • Ucar S, Erdem M, Tay T, Karago¨z S (2015) Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Techn Environ Policy 17:747–756

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9

    Article  CAS  Google Scholar 

  • Vaclavikova M, Gallios PG, Slavomir H, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Technol Environ Policy 10:89–95

    Article  CAS  Google Scholar 

  • Visa M, Duta A (2013) TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chem Eng J 223:860–868

    Article  CAS  Google Scholar 

  • Xie X, Gao L (2009) Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations. Curr Appl Phys 9:S185–S188

    Article  Google Scholar 

  • Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368

    Article  CAS  Google Scholar 

  • Yang K, Lin D, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576

    Article  CAS  Google Scholar 

  • Yang J, Liang Zhou L, Zhao L, Zhang H, Yin J, Wei G, Qian K, Wangb Y, Yu C (2011) A designed nanoporous material for phosphate removal with high efficiency. J Mater Chem 21:2489–2494

    Article  CAS  Google Scholar 

  • Yuwei C, Jialong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and it, s application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  • Zamani AA, Shokri R, Yaftian MR, Parizanganeh AA (2013) Adsorption of lead, zinc and cadmium ions from contaminated water on to Peganum harmala seeds as biosorbent. Int J Environ Sci Technol 10:93–102

    Article  CAS  Google Scholar 

  • Zha R, Nadimicherla R, Guo X (2014) Cadmium removal in waste water by nanostructured TiO2 particles. J Mater Chem A2:13932–13941

    Article  Google Scholar 

  • Zhang L, Na Liu, Yang L, Lin Q (2009) Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. J Hazard Mater 170:1197–1203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, S. Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Techn Environ Policy 18, 81–94 (2016). https://doi.org/10.1007/s10098-015-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0993-y

Keywords

Navigation