Skip to main content
Log in

Development of highly efficient double-substituted perovskite catalysts for abatement of diesel soot emissions

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Strontium-substituted LaCoO3 and double-substituted La0.9Sr0.1CoO3 by Cu, Fe and Ni perovskite catalysts were prepared via citric acid sol–gel method. The precursors were calcined at 750 °C in stagnant air. The precursor of the catalyst showing the best activity for soot oxidation was also reactively calcined in a flowing reactive mixture of 4.6 % CO in air at 750 °C. The catalysts were characterized by N2-sorption, XRD, FTIR and SEM. The substitution of Sr in LaCoO3 enhanced the activity of the catalyst. Further, increase in the activities of the catalysts was observed for double substitution of Cu, Ni and Fe in La0.9Sr0.1CoO3. The catalyst formulation La0.9Sr0.1Co0.5Fe0.5O3, calcined in air (Cat-5A) and reactively calcined (Cat-5B), showed higher activities than other four optimized catalysts composition calcined in air. Cat-5B exhibited the best activity resulting in total soot combustion at the lowest temperature of 325 °C. The best performance of Cat-5B was associated with its partially reduced perovskite phase as a result of reactive calcination leading to lattice vacancies and defects. Cat-5B has good thermal stability found in a repeated cycles of soot combustion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah AZ, Abdullah H, Bhatia S (2008) Improvement of loose contact diesel soot oxidation by synergic effects between metal oxides in K2O–V2O5/ZSM-5 catalysts. Catal Commun 9:1196–1200

    Article  CAS  Google Scholar 

  • Guillen-hurtado N, Lopez-Suarez FE, Bueno-Lopez A, Garcia-Garcia A (2014) Behavior of different soot combustion catalysts under NOx/O2. Importance of the catalyst-soot contact. React Kinet Mech Catal 111:167–182

    Article  CAS  Google Scholar 

  • Hall-Roberts VJ, Hayhurst AN, Knight DE, Taylor SG (2000) The origin of Soot in flames: is the nucleus an ion? Combust Flame 120:578–584

    Article  CAS  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Khalil MS (2003) Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba-CoO3 systems. Mater Sci Eng, A 352:64–70

    Article  Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  • Konstandopoulos AG, Papaioannou E (2008) Update on the science and technology of diesel particulate filters. KONA Powder Part J 26:36–65

    Article  Google Scholar 

  • Kostoglou M, Housiada P, Konstandopoulos AG (2003) Multi-channel simulation of regeneration in honeycomb monolithic diesel particulate filters. Chem Eng Sci 58:3273–3283

    Article  CAS  Google Scholar 

  • Li L, Shen X, Wang P, Meng X, Song F (2011) Soot capture and combustion for perovskite La–Mn–O based catalysts coated on honeycomb ceramic in practical diesel exhaust. Appl Surf Sci 257:9519–9524

    Article  CAS  Google Scholar 

  • Lombardo EA, Ulla MA (1998) Perovskite oxides in catalysis: past, present and future. Res Chem Intermed 24(5):581–591

    Article  CAS  Google Scholar 

  • Malek Abbaslou RM, Soltan J, Dalai AK (2010) Effects of nanotubes pore size on the catalytic performances of iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis. Appl Catal A 379:129–134

    Article  Google Scholar 

  • Mandelovici E, Villalba R, Sagarzazu A (1994) A distinctive mechanochemical transformation of manganosite into manganite by mortar dry grinding. Mater Res Bull 29(2):167–174

    Article  Google Scholar 

  • McClellan RO (1989) Health effects of exposure to diesel exhaust particles. Annu Rev Pharmacol Toxicol 27:279–300

    Article  Google Scholar 

  • Meng X, Ma Y, Chen R, Zhou Z, Chen B, Kan H (2013) Size-fractionated particle number concentrations and Daily mortality in a Chinese City. Environ Health Perspect 121(10):1174–1178

    Google Scholar 

  • Mi H, Zhang X, Xu Y, Xiao F (2010) Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl Surf Sci 256:2284–2288

    Article  CAS  Google Scholar 

  • Mishra A, Prasad R (2014) Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal Rev 56(1):57–81

    Article  CAS  Google Scholar 

  • Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, part B, applications in coordination, organometallic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  • Neri G, Bonaccorsi L, Donato A, Milone C, Musolino MG, Visco AM (1997) Catalytic combustion of diesel soot over metal oxide catalysts. Appl Catal B Environ 11:217–231

  • Prasad R, Bella VR (2010) Review on diesel soot emission, its effect and control. Bull Chem React Eng Catal 5:69–86

    Article  CAS  Google Scholar 

  • Prasad R, Sony Singh P (2013) Low temperature complete combustion of a lean mixture of LPG emissions over cobaltite catalysts. Catal Sci Technol 3:3223–3233

    Article  CAS  Google Scholar 

  • Ramesh S, Manoharan SS, Hegde MS (1995) Synthesis and structure of oxygen-deficient La2NiCoO5 and LaSrCo2O5 phases. J Mater Chem 5(7):1053–1057

    Article  CAS  Google Scholar 

  • ResitogluI A, Altinisik K, Keskin A (2015) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Policy 17:15–27

    Article  Google Scholar 

  • Russo N, Furfori S, Fino D, Saracco G, Specchia V (2008) Lanthanum cobaltite catalysts for diesel soot combustion. Appl Catal B 83:85–95

    Article  CAS  Google Scholar 

  • Schneider T (2008) How we know global warming is real: the science behind human induced climate change. Skept Mag 14:31–37

    Google Scholar 

  • Sonar D, Soni SL, Sharma D, Srivastava A, Goyal R (2014) Performance and emission characteristics of a diesel engine with varying injection pressure and fuelled with raw mahua oil (preheated and blends) and mahua oil methyl ester. Clean Technol Environ Policy. doi:10.1007/s10098-014-0874-9

    Google Scholar 

  • Tanaka H, Mizuno N, Misono M (2003) Catalytic activity and structural stability of La0.9Ce0.1Co1−x Fe x O3perovskite catalysts for automotive emissions control. Appl Catal A 244:371–382

    Article  CAS  Google Scholar 

  • Zhang R, Luo N, Chen B, Kaliaguine S (2010) Soot combustion over lanthanum cobaltites and related oxides for diesel exhaust treatment. Energy Fuels 24(7):3719–3726

    Article  CAS  Google Scholar 

  • Zhu L, Yu J, Wang X (2007) Oxidation treatment of diesel soot particulate on Ce x Zr1−x O2. J Hazard Mater 140:205–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given to the project by the Department of Science and Technology, India under the SERC (Engineering Science) project Grant DST No. SR/S3/CE/0062/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Prasad, R. Development of highly efficient double-substituted perovskite catalysts for abatement of diesel soot emissions. Clean Techn Environ Policy 17, 2337–2347 (2015). https://doi.org/10.1007/s10098-015-0976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0976-z

Keywords

Navigation