Skip to main content

Advertisement

Log in

Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Incineration has become an attractive option for municipal solid waste (MSW) management, due to its several benefits. In fact, it allows volume and mass reduction of waste and energy recovery from MSW combustion. Nevertheless, MSW incineration (MSWI) produces three main types of residues: bottom ash (BA), fly ash (FA) and air pollution control (APC) residues, which require an adequate handling. BA is the most significant by-product from MSWI and is generally considered as non-hazardous waste. Instead, FAs are included as hazardous wastes because are characterised by high content of chlorides, heavy metals and organic compounds. The aim of this paper was to examine the characteristics of MSWI solid residues, the management and reuse of these wastes and their environmental assessment from a life cycle perspective. It was noted that the main components that make up the residues are lead and zinc as well as oxides, mainly CaO, SiO2 and Al2O3. Furthermore, it is necessary to take into account the presence of PCDD/F which characterised FA and APC residues, mainly due to chlorine content. Chemical and physical properties of those residues make possible their reuse as construction material, as adsorbent, as well as in geotechnical and agricultural applications. Nevertheless, several studies have demonstrated that a drawback of the reuse of MSWI residues is the existence of heavy metals in elevated concentrations which may affect the environmental quality. In this regard, many studies were aimed to assess the environmental impact related to the introduction of MSWI residues as secondary material in several fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulahi M (2009) Municipal solid waste incineration bottom ash as road construction material. AU J Technol 13(2):121–128

    Google Scholar 

  • Aberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). Sci Total Environ 355:1–12

    Google Scholar 

  • Alba N, Gassó S, Lacorte T, Baldasano JM (1997) Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. Air Waste Manag 47:1170–1179

    CAS  Google Scholar 

  • Alba N, Vàzquez E, Gassò S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Manag 21:313–323

    CAS  Google Scholar 

  • Alinnor IJ (2007) Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86:853–857

    CAS  Google Scholar 

  • Allegrini E, Boldrin A, Kallesoe J, Astrup TF (2014) LCA of metal recovery from waste incineration bottom ash. In: 5th international conference on engineering for waste and biomass valorisation, session LCA of MSW treatment options, num. 32

  • Amin AW, Sherif FK, El-Atar H, Ez-Eldin H (2009) Residual effect of sewage sludge on soil and several yield parameters of Zea mays. Res J Environ Toxicol 3(2):86–93

    CAS  Google Scholar 

  • Andreola F, Barbieri L, Hreglich S, Lancellotti I, Morselli L, Passarin FI, Vassura I (2008) Reuse of incinerator bottom and fly ashes to obtain glassy materials. J Hazard Mater 153:1270–1274

    CAS  Google Scholar 

  • Appendino P, Ferraris M, Matekorits I, Salvo M (2004) Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators. J Eur Ceram Soc 24(5):803–810

  • Aranda-Usón A, Ferreira G, López-Sabirón AM, Sastresa EL, De Guinoa AS (2012) Characterisation and environmental analysis of sewage sludge as secondary fuel for cement manufacturing. Chem Eng Trans 29:457–462

    Google Scholar 

  • Arce R (2009) Gestión de lodos de cabina de pintura mediante tecnologías de solidificación/estabilización. PhD thesis. University of Cantabria

  • Arickx S, De Borger V, Van Gerven T, Vandecasteele C (2010) Effect of carbonation on the leaching of organic carbon and copper from MSWI bottom ash. Waste Manag 30:1296–1302

    CAS  Google Scholar 

  • Arm M (2004) Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests. Waste Manag 24:1035–1042

    CAS  Google Scholar 

  • Astrup T (2007) Pretreatment and utilization of waste incineration bottom ashes: danish experiences. Waste Manag 27:1452–1457

    Google Scholar 

  • Baciocchi R, Costa G, Di Bartolomeo E, Polettini A, Pomi R (2009) The effects of accelerated carbonation on CO2 uptake and metal releases from incineration APC residues. Waste Manag 29:2994–3003

    CAS  Google Scholar 

  • Barberio G, Buttol P, Masoni P, Scalbi S, Andreola F, Barbieri L, Lancelloti I (2010) Use of incinerator bottom ash for frit production. J Ind Ecol 12(2):200–213

    Google Scholar 

  • Barbieri L, Corradi A, Lancellotti I (2001) Wastes-based glasses and glass ceramics. Materiales de Construcción 51:197–208

    CAS  Google Scholar 

  • Bayat B (2002) Combined removal of zinc(ii) and cadmium(ii) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. J Water Air Soil Pollut 136:69–92

    CAS  Google Scholar 

  • Bayuseno A, Schmahl W (2011) Characterization of MSWI fly ash through mineralogy and water extraction. Resour Conserv Recycl 55:524–534

    Google Scholar 

  • Becquart F, Bernard F, Abriak NE, Zentar R (2009) Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Manag 29(4):1320–1329

    CAS  Google Scholar 

  • Bertolini L, Carsana M, Cassago D, Curzio AQ, Collepardi M (2004) MSWI ashes as mineral additions in concrete. Cem Concr Res 34(10):1899–1906

    CAS  Google Scholar 

  • Birgisdóttir H (2005) Life cycle model for road construction and use of residues from waste incineration. PhD thesis. Institute of Environment and Resource, Technical University of Denmark

  • Birgisdóttir H, Pihl KA, Bhander G, Haushild MZ, Christensen TH (2006) Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration. Transp Res 11(D):358–368

    Google Scholar 

  • Birgisdóttir H, Bhander G, Haushild MZ, Christensen TH (2007) Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Manag 27:75–84

    Google Scholar 

  • Boesch ME, Vadenbo C, Saner D, Huter C, Hellweg S (2013) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag 34(2):378–389

    Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010) A new method for Municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12:2093–2099

    CAS  Google Scholar 

  • Bosio A, Rodella N, Depero LE, Bontempi E (2014a) Rice husk ash based composites, obtained by toxic fly ash inertization and their applications as adsorbents. Chem Eng Trans 37:631–636

    Google Scholar 

  • Bosio A, Zacco A, Borgese L, Rodella N, Colombi P, Benassi L, Depero LE, Bontempi E (2014b) A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: a green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem Eng J 253:377–384

    CAS  Google Scholar 

  • Chandler AJ, Eighmy TT, Hartlén J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues, studies in environmental science, vol 67. Elsevier Science, Amsterdam

    Google Scholar 

  • Chang F, Wey M (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater B138:594–603

    Google Scholar 

  • Chen D, Christensen TH (2010) Life Cycle Assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Manag Res 28(6):508–519

    CAS  Google Scholar 

  • Chen W, Chang F, Shen Y, Tsai M, Ko C (2012) Removal of chloride from MSWI fly ash. J Hazard Mater 237–238:116–120

    Google Scholar 

  • Cheng TW (2004) Combined glassification of EAF dust and incinerator fly ash. Chemosphere 50:47–51

    Google Scholar 

  • Chiang K, Hu Y (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manag 30:831–838

    CAS  Google Scholar 

  • Chiang YW, Ghyselbrecht K, Santos RM, Meesschaert B, Martens JA (2012) Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal Today 190:23–30

    CAS  Google Scholar 

  • Chimenos JM, Segarra M, Fernández MA, Espiell F (1999) Characterisation of the bottom ash in municipal solid waste incineration. J Hazard Mater 64:211–222

    CAS  Google Scholar 

  • Chimenos JM, Fernández AI, Cervantes A, Miralles L, Fernández MA, Espiell F (2005) Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manag 25:686–693

    CAS  Google Scholar 

  • Cioffi R, Colangelo F, Montagnaro F, Santoro L (2011) Manufacture of artificial aggregate using MSWI bottom ash. Waste Manag 31(2):281–288

    CAS  Google Scholar 

  • Collepardi M, Collepardi S, Ongaro D, Curzio AQ, Sammartino M (2010) Concrete with bottom ash from municipal solid wastes incinerators. In: 2nd international conference on sustainable construction materials and technologies, pp 289–298

  • Cossu R, Lai T, Pivnenko K (2012) Waste washing pre-treatment of municipal and special waste. J Hazard Mater 207–208:65–72

    Google Scholar 

  • Costa G, Baciocchi R, Polettini A, Pomi R, Hills CD, Carey PJ (2007) Current status and perspectives or accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135:55–75

    CAS  Google Scholar 

  • Crannel BS, Eighmy TT, Krzanowski JE, Dykstra Eusden J Jr, Shaw EL, Francis CA (2000) Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag 20:135–148

    Google Scholar 

  • Dabo D, De Badreddine Windt L, Drouadaine I (2009) Ten-years chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater 172:904–913

    CAS  Google Scholar 

  • Danish Environmental Protection Agency (1997) Dioxins—sources, levels and exposures in Denmark

  • De Boom A, Degrez M (2012) Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manag 32:1163–1170

    Google Scholar 

  • De Boom A, Degrez M, Hubaux P, Lucion C (2011) MSWI boiler fly ashes: magnetic separation for material recovery. Waste Manag 31:1505–1513

    Google Scholar 

  • De Boom A, Aubert J, Degrez M (2014) Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution. Waste Manag Res 32:406–413

    Google Scholar 

  • De Windt L, Dabo D, Lidelow S, Badreddine R, Lagerkvist A (2011) MSWI bottom ash used as basement at two pilot-scale roads: Comparison of leachate chemistry and reactive transport modeling. Waste Manag 31:267–280

    Google Scholar 

  • del Valle-Zermeño R, Formosa J, Chimenos JM, Martínez M, Fernández AI (2013) Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag 33:621–627

    Google Scholar 

  • Derie R (1996) A new way to stabilize fly ash from municipal incinerators. Waste Manag 16(8):711–716

    CAS  Google Scholar 

  • Dijkstra JJ, Van Zomeren A, Meeussen JCL (2006) Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum. Environ Sci Technol 40:4481–4487

    CAS  Google Scholar 

  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933

    CAS  Google Scholar 

  • Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manag 23:631–640

    CAS  Google Scholar 

  • Ecoinvent (2008) The life cycle inventory data version 2.0. Swiss Center for Life Cycle Inventories. www.ecoinvent.ch. Accessed 10 Nov 2014

  • Environmental Agency of UK (2002) Solid residues from municipal waste incinerators in England and Wales

  • Fabrellas B, Sanz P, Abad E, Rivera J (1999) The Spanish dioxin inventory: proposal and preliminary results from municipal waste incinerator emissions. Organohalog Compd 41:491–494

    CAS  Google Scholar 

  • FederAmbiente and ENEA (2009) Italian National Agency for New Technology, Energy and the Environment. Technical report on energy recovery from municipal waste in Italy, second edition

  • Fedje KK, Ekberg C, Skarnemark G, Steenari BM (2010) Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods. J Hazard Mater 173:310–317

    Google Scholar 

  • Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B96:201–216

    Google Scholar 

  • Ferreira C, Jensen P, Ottosen L, Ribeiro A (2005) Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Eng Geol 77:339–347

    Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in Life Cycle Assessment. J Environ Manag 91:1–21

    Google Scholar 

  • Forteza R, Far M, Seguí C, Cerdá V (2004) Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag 24:899–909

    CAS  Google Scholar 

  • Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Leloup B, Guyonnet D (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manag 22:159–172

    CAS  Google Scholar 

  • Fuoco R, Ceccarini A, Tassone P, Wei Y, Brongo A, Francesconi S (2005) Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste. Microchem J 79:29–35

    CAS  Google Scholar 

  • Gandhimathi R, Ramesh ST, Sindhu V, Nidheesh PV (2012) Single and tertiary system dye removal from aqueous solution using bottom ash: kinetic and isotherm studies. Iranica J Energy Environ 3(1):35–45

    Google Scholar 

  • Gao X, Wang W, Ye T, Wang F, Lan Y (2008) Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J Environ Manag 88:293–299

    CAS  Google Scholar 

  • García-Gusano D, Herrera I, Garraín D, Lechón Y, Cabal H (2015) Life cycle assessment of the Spanish cement industry: implementation of environmental-friendly solutions. Clean Technol Environ Policy 17:59–73

    Google Scholar 

  • Geng C, Chen D, Wenzhou S, Liu Pu (2010) Life cycle assessment for roadbase construction using bottom ash from municipal solid waste incineration in Shanghai. In: International conference on e-product e-service and e-entertainment (ICEEE2010), num. 5660547

  • Gines O, Chimenos JM, Vizcarro A, Formosa J, Rosell JR (2009) Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. J Hazard Mater 169:643–650

    CAS  Google Scholar 

  • Giugliano M, Grosso M, Rigamonti L (2008) Energy recovery from municipal waste: A case study for a midle-size Italian district. Waste Manag 28(1):39–50

  • Grosso M, Rigamonti L, Biganzoli L, Schiona G (2010) Metals recovery from incineration bottom ashes: futures opportunities in Italy. In: International conference on hazardous and industrial waste management, pp 1–9

  • Guarienti M, Gianoncelli A, Bontempi E, Moscoso Cardozo S, Borgese L, Zizioli D, Mitola S, Depero LE, Presta M (2014) Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J Hazard Mater 279:311–321

    CAS  Google Scholar 

  • Guohua NI, Zhao P, Jiang Y, Meng Y (2012) Vitrification of MSWI fly ash by thermal plasma melting and fate of heavy metals. Plasma Sci Technol 14(9):813–818

    Google Scholar 

  • Gupta VK, Ali I, Saini VK, Van Gerven T, Van der Bruggen B, Vandecasteele C (2005) Removal of dyes from wastewater using bottom ash. Ind Eng Chem Res 44:3655–3664

    CAS  Google Scholar 

  • Haiying Z, Youcai Z, Jingyu Q (2007) Study on use of MSWI fly ash in ceramic tile. J Hazard Mater 141:106–114

    Google Scholar 

  • Haiying Z, Youcai Z, Jingyu Q (2010) Thermal characterization of fly ash from one municipal solid waste incinerator (MSWI) in Shanghai. Process Saf Environ Prot 88:269–275

    Google Scholar 

  • Hassan HF (2005) Recycling of municipal solid waste incinerator ash in hot-mix asphalt concrete. Constr Build Mater 19:91–98

    Google Scholar 

  • Haugsten KE, Gustavson B (2000) Environmental properties of vitrified fly ash from hazardous and municipal waste incineration. Waste Manag 20:167–176

    CAS  Google Scholar 

  • He PJ, Zhang CH, Lee DJ (2004) Characteristics of air pollution control residues of MSW incineration plant in Shanghai. J Hazard Mater B116:229–237

    Google Scholar 

  • Hjelmar O (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47:345–368

    CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Ishigami Y, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ash using saponins. Chemosphere 41:345–352

    CAS  Google Scholar 

  • Hong J, Li X, Zhaojie C (2010) Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag 30:2362–2369

    CAS  Google Scholar 

  • Hou X, Ma X (2007) Research on Disposing of Landfill Leachate Polluted by Heavy Metal Using Incineration Ashes of Burning Rubbish. J Subtrop Resour Environ 2(2):30–36

    Google Scholar 

  • Huang Y,Bird R, Heidrich O (2009) Development of a life cycle assessment tool for construction and maintenance of asphakt pavements. J Clean Prod 17:283-296

  • Huntzinger DH, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675

    CAS  Google Scholar 

  • Hyun J-S, Park J-W, Maken S, Park JJ (2004) Vitrification of Fly and Bottom Ash from Municipal Solid Waste Incinerator using Brown’s Gas. J Ind Eng Chem 10(3):361–367

    CAS  Google Scholar 

  • IChemE (2002) The sustainability metrics. Sustainable development progress metrics recommended for use in the process industries. The Institution of Chemical Engineers, Rugby

    Google Scholar 

  • Irabien A, Olmo IF, Andrés A (2002) Binders based on cement/glassy combustion residues for the stabilisation/solidification of industrial wastes. J Chem Techn Biotechnol 77:326–330

    CAS  Google Scholar 

  • ISO (2006) ISO 14040: Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  • Ito R, Fujita T, Sadaki J, Matsumoto Y, Ahn JW (2006) Removal of chloride in bottom ash from the industrial and municipal solid waste incinerators. Int J Soc Mater Eng Resour 13(2):70–74

    CAS  Google Scholar 

  • Jian-guo J, Xin X, Jun W, Shi-jian Y, Yan Z (2007) Investigation of basic properties of fly ash from urban waste incinerators in China. J Environ Sci 19:458–463

  • Jianguo J, Maozhe C, Yan Z, Xin X (2009) Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. J Hazard Mater 161:1046–1051

    Google Scholar 

  • Jing Z, Matsuoka N, Jin F, Hashida T (2007) Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Manag 27:287–293

    CAS  Google Scholar 

  • JSRRI, Japan Synchroton Radiation Research Institute (2000–2001) Direct speciation of copper, lead, antimony, zinc and chromium in municipal solid waste incinerator fly ash by X-ray adsorption fine structure spectroscopy. In Spring-8 Res Front 65–67. www.spring8.or.jp/e/publication/res_fro/RF00-01/065-067.pdf. Accessed 18 Nov 2014

  • Jung CH, Matsuto T, Tanaka N, Okada T (2004) Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag 24:381–391

    CAS  Google Scholar 

  • Juric B, Hanzic L, Ilic R, Samec N (2006) Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag 26:1436–1442

    CAS  Google Scholar 

  • Kalmykova Y, Karlfeldt Fedje K (2013) Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manag 33:1403–1410

    CAS  Google Scholar 

  • Katsuura H, Inoue T, Hiraoka M, Sakai S (1996) Full-scale plant study on fly ash treatment by the acid extraction procedure. Waste Manag 16(5/6):491–499

    CAS  Google Scholar 

  • Keppert M, Pavlik Z, Cerny R, Reiterman P (2012) Properties of concrete with municipal solid waste incinerator bottom ash. Int Proc Comput Sci Inf Technol 28:127–131

    Google Scholar 

  • Kim J-M, Kim H-S (2004) Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J Eur Ceram Soc 24:2373–2382

    CAS  Google Scholar 

  • Ko M, Chen Y, Wei P (2013) Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation. Waste Manag 33:615–620

    CAS  Google Scholar 

  • Kulkarni PS, Crespo JG (2008) Dioxins sources and current remediation technologies—a review. Environ Int 34(1):139–153

    CAS  Google Scholar 

  • Kumagai S, Koda S, Miyakita T (2001) Estimation of dioxin exposure concentrations and dioxin intakes of workers at continuously burning municipal waste incinerators. J Occup Health 43(2):61–69

    CAS  Google Scholar 

  • Kuo N-W, Ma H-W, Yang Y-M, Hsiao T-Y, Huang C-M (2007) An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Manag 27(11):1673–1679

    CAS  Google Scholar 

  • Kuo W-T, Liu C-C, Wang H-Y, Shu C-Y (2013) Characteristics of compressed concrete paving units produced from washed municipal solid waste incinerator bottom ash. Adv Mater Res 723:588–593

    Google Scholar 

  • Lam CHK, Ip AW, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustain 2:1943–1968

    CAS  Google Scholar 

  • Landreth RE, Reber PA (1997) Municipal solid wastes: problems and solutions. CRC Press, Boca Raton

    Google Scholar 

  • Laurent A, Clavreul J, Berstad A, Bakas I, Niero M, Emmanuel G, Christensen TH, Hauschild M (2014) Review of LCA studies of solid waste management systems-Part II: methodological guidance for better practice. Waste Manag 34:589–606

    Google Scholar 

  • Lee T, Chang C, Rao M, Su X (2011) Modified MSWI ash-mix slag for use in cement concrete. Constr Build Mater 25:1513–1520

    Google Scholar 

  • Li M, Hu S, Xiang J, Sun L, Li P, Su S, Sun X (2003) Characterization of fly ashes from two Chinese municipal solid waste incinerators. Energy Fuel 17:1487–1491

    CAS  Google Scholar 

  • Li M, Xiang J, Hu S, Sun L, Su S, Li P, Sun X (2004) Characterization of solid residues from municipal solid waste incinerator. Fuel 83(10):1397–1405

    CAS  Google Scholar 

  • Li X, Lv Y, Ma B, Chen Q, Yin X, Jian S (2012) Utilization of municipal solid waste incineration bottom ash in blended cement. J Clean Prod 32:96–100

    CAS  Google Scholar 

  • Liao W, Yang R, Zhou Z, Huang J (2014) Electrokinetic stabilization of heavy metals in MSWI fly ash after water washing. Environ Progress Sustain Energy 33(4):1235–1241

    CAS  Google Scholar 

  • Lidelow S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manag 27:1356–1365

    CAS  Google Scholar 

  • Lima AT, Ottosen LM, Pedersen AJ, Ribeiro AB (2008) A characterization of fly ash from bio and municipal waste. Biomass Bioenergy 32(3):277–282

    CAS  Google Scholar 

  • Lima AT, Ottosen LM, Ribeiro AB (2012) Assessing fly ash treatment: remediation and stabilization of heavy metals. J Environ Manag 95:110–115

    Google Scholar 

  • Ling YC, Hon Peter CC (1998) A Taiwanese study of 2, 3, 7, 8-substituted PCDD/DFs and coplanar PCBs in fly ashes from incinerators. J Hazard Mater 58:83–91

    CAS  Google Scholar 

  • Liu F, Liu JG, Yu QF, Nie YF (2004) Chemical speciation and mobility of heavy metals in municipal solid waste incinerator fly ash. J Environ Sci 16:885–888

    CAS  Google Scholar 

  • Liu W, Hou H, Zhang C (2009) Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash. Waste Manag Res 27:258–266

    CAS  Google Scholar 

  • Liu Y, Wang J, Xiang L, Wang L, Shan Z, Wei Y (2012) Microstructures and thermal properties of municipal solid waste incineration fly ash. J Cent South Univ 19:855–862

    CAS  Google Scholar 

  • Lo HM, Chiu HY, Lo SW, Lo FC (2012) Effects of different SRT on anaerobic digestion of MSW dosed with various MSWI ashes. Bioresour Technol 125:233–238

    CAS  Google Scholar 

  • Lundin L, Marklund S (2008) Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator. Env Sci Technol 42(4):1245–1250

    CAS  Google Scholar 

  • Lundtorp K, Jensen DL, Christensen TH (2002) Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale. J Air Waste Manag Assoc 52:722–731

    CAS  Google Scholar 

  • Ma G, Zhang H (2013) Washing of the ash from one shanghai plant using phosphoric acid. Adv Mater Res 664:228–231

    Google Scholar 

  • Mangialardi T (2003) Disposal of MSWI fly ash through a combined washing-immobilisation process. J Hazard Mater 98:225–240

    CAS  Google Scholar 

  • Margallo M (2014) Life cycle model of waste to energy technologies in Span and Portugal. PhD thesis. University of Cantabria

  • Margallo M, Aldaco R, Bala A, Fullana P, Irabien A (2010) Implementation of the selective collection in small villages of less than 50 Inhabitants in Cantabria region (Spain): preliminary viability study. Chem Eng Trans 21:733–738

    Google Scholar 

  • Margallo M, Aldaco R, Irabien A (2013) Life cycle assessment of bottom ash management from municipal solid waste incinerator (MSWI). Chem Eng Trans 35:871–876

    Google Scholar 

  • Margallo M, Aldaco R, Irabien A (2014a) Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Techn Environ Policy 16(7):1319–1328

    CAS  Google Scholar 

  • Margallo M, Aldaco R, Irabien A (2014b) A case study for environmental impact assessment in the process industry: municipal Solid Waste Incineration (MSWI). Chem Eng Trans 39:613–618

    Google Scholar 

  • Massardier V, Moszkowicz P, Taha M (1997) Fly ash stabilization-solidification using polymer-concrete double matrices. Eur Polym J 33:1081–1086

    CAS  Google Scholar 

  • McDougall FR, White PR, Franke M, Hindle P (2001) Integrated solid waste management: a life cycle inventory. Blackwell Science, Malden

    Google Scholar 

  • Meima JA, Comans R (1999) The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl Geochem 14:159–171

    CAS  Google Scholar 

  • Mizutani S, Sakai S, Takatsuki H (2000) Leaching behaviors of heavy metals from MSWI residues and Pb adsorption onto the residues under alkaline conditions. Waste Manage Ser 1(C):726–732

    CAS  Google Scholar 

  • Moller J, Munk B, Crillesen K, Christensen TH (2011) Life Cycle Assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator. Waste Manag 31(6):1184–1193

    CAS  Google Scholar 

  • Monash P, Pugazhenthi G (2009) Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15:390–405

    CAS  Google Scholar 

  • Monteiro RCC, Figueiredo CF, Alendouro MS, Ferro MC, Davim EJR, Fernandes MHV (2008) Characterization of MSWI bottom ashes towards utilization as glass raw material. Waste Manag 28(7):1119–1125

    CAS  Google Scholar 

  • Nakamura K, Kinoshita S, Takatsuki H (1996) The origin and behavior of lead, cadmium and antimony in msw incinerator. Waste Manag 15(5–6):509–517

    Google Scholar 

  • Okada T, Tojo Y, Tanaka N, Matsuto T (2007) Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW—comparison and applicability of chemical leaching methods. Waste Manag 27:69–80

    CAS  Google Scholar 

  • Olsson S, Kärrman E, Gustafsson JP (2006) Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction. Res Conserv Recycl 48:26–40

    Google Scholar 

  • Ondova M, Stevulova N (2013) Environmental assessment of fly ash concrete. Chem Eng Trans 35:841–846

    Google Scholar 

  • Onori R, Polettini A, Pomi R (2011) Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. Waste Manag 31:298–310

    CAS  Google Scholar 

  • Osako M, Kim YJ, Lee DH (2002) A pilot and field investigation on mobility of PCDDs/PCDFs in landfill site with municipal solid waste incineration residue. Chemosphere 48:849–856

    CAS  Google Scholar 

  • Pan JR, Huang C, Kuo JJ, Lin SH (2008) Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manag 28:1113–1118

    CAS  Google Scholar 

  • Pan Y, Wu Z, Zhou J, Zhao J, Ruan X, Liu J, Qian G (2013) Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J Hazard Mater 261:269–276

    CAS  Google Scholar 

  • Park YJ (2009) Stabilization of a chlorine-rich fly ash by colloidal silica solution. J Hazard Mater 162:819–822

    CAS  Google Scholar 

  • PE International (2011) GaBi 4 software and databases for life cycle assessment. GaBi Software System, Leinfelden-Echterdingen

    Google Scholar 

  • Pecqueur G, Crignon C, Quènèe B (2001) Behaviour of cement-treated MSWI bottom ash. Waste Manag 21:229–233

    CAS  Google Scholar 

  • Pederson AJ (2002) Evaluation of assisting agents for electrodialytic removal of Cd, Pb, Zn and Cr from MSWI fly ash. J Hazard Mater B95:185–198

    Google Scholar 

  • Pera J, Coutaz L, Ambroise J, Chababbet M (1997) Use of incinerator bottom ash in concrete. Cem Concr Res 27(1):1–5

  • Piantone P, Bodènan F, Derie R, Depelsenaire G (2003) Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach. Waste Manag 23:225–243

    CAS  Google Scholar 

  • Polettini A, Pomi R, Carcani G (2005) The effect of Na and Ca salts on MSWI bottom ash activation for reuse as a pozzolanic admixture. Resour Conserv Recycl 43:403–418

    Google Scholar 

  • Puccini M, Seggiani M, Vitolo S, Iannelli R (2013) Life cycle assessment of remediation alternatives for dredged sediments. Chem Eng Trans 35:781–786

    Google Scholar 

  • Puma S, Marchese F, Dominijanni A, Manassero M (2013) Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material. Waste Manag Res 31:577–584

    CAS  Google Scholar 

  • Qian G, Cao Y, Chui P, Joohwa T (2006) Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. J Hazard Mater B129:274–281

    Google Scholar 

  • Quenee B, Li G, Siwak JM, Basuyau V (2000) The use of MSWI (Municipal solid waste incineration) bottom ash as aggregates in hydraulic concrete. Waste Manage Ser 1(C):422–437

    CAS  Google Scholar 

  • Quina MJ, Bordado JC, Quinta-Ferreira RM (2008a) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    CAS  Google Scholar 

  • Quina MJ, Santos RC, Bordado JC, Quinta-Ferreira RM (2008b) Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal. J Hazard Mater 152:853–869

    CAS  Google Scholar 

  • Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes—a review. J Mater Sci 41(3):733–761

    CAS  Google Scholar 

  • Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Res Conserv Recycl 43:313–336

    Google Scholar 

  • Rendek E, Ducom G, Germain P (2007) Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Manag 27:1403–1407

    Google Scholar 

  • Rodella N, Bosio A, Dalipi R, Zacco A, Borgese L, Depero LE, Bontempi E (2014) Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arabian J Chem (in press). doi:10.1016/j.arabjc.2014.04.006

  • Rogbeck J, Hartlén J (1996) Ash gravel—a material for recycling. Waste Manag 16(1–3):109–112

    CAS  Google Scholar 

  • Ruiz MC, Andrés A, Irabien A (2003) Environmental assessment of cement/foundry sludge products. Environ Technol 24:589–596

    CAS  Google Scholar 

  • Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speose C, Heuss-Assbichler S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manag 23:61–88

    CAS  Google Scholar 

  • Saikia N, Kato S, Kojima T (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag 27:1178–1189

    CAS  Google Scholar 

  • Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    CAS  Google Scholar 

  • Scarinci G, Brusatin G, Barbieri L, Corradi A, Lancellotti I, Colombo P, Hreglich S, Dall’Igna R (2000) Vitrification of industrial and natural wastes with production of glass fibres. J Eur Ceram Soc 20:2485–2490

    CAS  Google Scholar 

  • Schabbach LM, Bolelli G, Andreola F, Lancellotti Barbieri L (2012) Valorization of MSWI bottom ash through ceramic glazing process: a new technology. J Clean Prod 23:147–157

    CAS  Google Scholar 

  • Scipioni A, Mazzi A, Niero M, Boatto T (2009) LCA to choose among alternative design solutions: the case study of a new Italian incineration line. Waste Manag 29(9):2462–2474

    CAS  Google Scholar 

  • Shareefden Z, Elkamel A, Tse S (2015) Review of current technologies used in municipal solid waste-to energy facilities in Canada. Clean Technol Environ Policy. doi:10.1007/s10098-015-0904-2

    Google Scholar 

  • Shi HS, Kan LL (2009) Characteristics of municipal solid wastes incineration (MSWI) fly ash-cement matrices and effect of mineral admixtures on composite system. Constr Build Mater 23:2160–2166

    Google Scholar 

  • Shih P, Chang J, Chiang L (2003) Replacement of raw mix in cement production by municipal solid waste incineration ash. Cem Concr Res 33:1831–1836

    CAS  Google Scholar 

  • Shim Y, Rhee S, Lee W (2005) Comparison of leaching characteristics of heavy metals from bottom ash and fly ashes in Korea and Japan. Waste Manag 25:473–480

    CAS  Google Scholar 

  • Shin KJ, Chang YS (1999) Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals fly ash produced from Korean municipal solid waste incinerators. Chemosphere 38:2655–2666

    CAS  Google Scholar 

  • Song G, Kim K, Seo Y, Kim S (2004) Characterization of ashes from different locations at the MSW incinerator equipped with various air pollution control devices. Waste Mang 24:99–106

    CAS  Google Scholar 

  • Sorlini S, Abbà A, Collivignarelli C (2011) Recovery of MSWI and soil washing residues as concrete aggregates. Waste Manag 31(2):289–297

    CAS  Google Scholar 

  • Sun Y, Zheng J, Zou L, Liu Q, Zhu P, Qian G (2011) Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals. Waste Manag 31:325–330

    CAS  Google Scholar 

  • Tang P, Florea M, Spiesz P, Brouwers H (2014) The application of treated bottom ash in mortar as cement replacement. EurAsia Waste Manag Symp, Istanbul, pp 1077–1082

    Google Scholar 

  • Todorovic J, Ecke H (2006) Demobilisation of critical contaminants in four typical waste-to-energy ashes by carbonation. Waste Manag 26:430–441

    CAS  Google Scholar 

  • Toller S, Källar E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incineration residue utilisation. Waste Manag 29:2071–2077

    CAS  Google Scholar 

  • Tuppurainen K, Halone I, Ruokojarni P, Tarhanen J, Ruuskanen J (1997) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review. Chemosphere 36(7):1493–1511  

  • Van Gerven T, Geysen D, Stoffels L, Jaspers M, Wauters G, Vandecasteele C (2005) Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Manag 25:75–87

    Google Scholar 

  • Vehlow J and Seifert H (2012) Management of residues from energy recovery by thermal waste-to-energy systems and quality standards. Report for International Energy Agency (IEA), Bioenergy Task 36 Topic 5. Karlsruher Institut für Technologie

  • Vichaphund S, Jiemsirilers S, Thavarniti P (2012) Sintering of municipal solid waste incineration bottom ash. J Eng Sci 8:51–59

    Google Scholar 

  • Vu DH, Wang K-S, Chen J-H, Nam BX, Bac BH (2012) Glass-ceramic from mixtures of bottom ash and fly ash. Waste Manag 32(12):2306–2314

    CAS  Google Scholar 

  • Vyzinkarova D, Allegrini E, Laner D, Astrup TF (2013) Exergy analysis of aluminum recovery from municipal solid waste incineration. In: 3rd international exergy, life cycle assessment, and sustainability workshop & symposium (EKCAS3), Greece. Session 2 (Exergy and industrial systems)

  • Wang Q, Yang J, Wang Q, Wu T (2009) Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater 162:812–818

    CAS  Google Scholar 

  • Wang L, Jin Y, Nie Y (2010) Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J Hazard Mater 174:334–343

    CAS  Google Scholar 

  • Wang L, Li R, Li Y, Wei L (2012) Release of soluble salts and heavy metals during the short-time washing process of MSWI fly ash. Adv Mater Res 518–523:3247–3251

    Google Scholar 

  • Wang Y, Liu J, Sun S (2014) Effects of water washing on volatile characteristics of heavy metals in fly ash from a MSW and sewage sludge co-combustion plant. J Central South Univ 45(5):1751–1758

    CAS  Google Scholar 

  • Wdovin M, Franus M, Panek R, Badura L, Franus W (2014) The conversion of fly ash into zeolites. Clean Technol Environ Policy 16:1217–1223

    Google Scholar 

  • Wei Y, Shimaoka T, Saffarzadeh A, Takahashi F (2011) Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J Hazard Mater 187:534–543

    CAS  Google Scholar 

  • Wei S, Juan W, Qunhui W, Tingji W, Jie Y (2013) Bioleaching of fly ash from municipal solid waste incineration using kitchen waste saccharified solution as culture medium. J Chem Soc Pakistan 35:212–216

    Google Scholar 

  • Wey M-Y, Liu K-Y, Tsai T-H, Chou J-T (2006) Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. J Hazard Mater B137:981–989

    Google Scholar 

  • Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47(13):325–344

    CAS  Google Scholar 

  • Wu H, Ting Y (2006) Metal extraction from municipal solid waste (MSW) incinerator fly ash- Chemical leaching and fungal bioleaching. Enzyme Microbiol Technol 38:839–847

    CAS  Google Scholar 

  • Wu K, Shi H, Schutter G, Guo X, Ye G (2012) Preparation of alinite cement from municipal solid waste incineration fly ash. Cem Conc Compos 34:322–327

    CAS  Google Scholar 

  • Wu C, Sun C, Gau S, Hong C, Chen C (2013) Mechanochemically induced synthesis of anorthite in MSWI fly ash with kaolin. J Hazard Mater 244–245:412–420

    Google Scholar 

  • Xiao Y, Oorsprong M, Yang Y, Voncken JHL (2008) Vitrification of bottom ash from a municipal solid waste incineration. Waste Manag 28:1020–1026

    CAS  Google Scholar 

  • Xu Y, Chen Y, Feng Y (2013) Stabilization treatment of the heavy metals in fly ash from municipal solid waste incineration using diisopropyl dithiophosphate potassium. Environ Technol 34(11):1411–1419

    CAS  Google Scholar 

  • Xu T, Ramanathan T, Ting Y (2014) Bioleaching of incineration fly ash by Aspergillus niger—precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol Rep 3:8–14

    Google Scholar 

  • Xue Q, Li J, Wang P, Liu L, Li Z (2014) Removal of heavy metals from landfill leachate using municipal solid waste incineration fly ash as adsorbent. CLEAN Soil Air Water 41(9999):1–6

    Google Scholar 

  • Yan D, Tang I, Lo I (2014) Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Constr Build Mater 64:201–207

    Google Scholar 

  • Yang S, Chiu W, Wang T, Lee W, Chen C, Tzeng A (2009) Asphalt concrete and permeable brick produced from incineration ash using thermal plasma technology. J Environ Eng Manag 19(4):221–226

    CAS  Google Scholar 

  • Yang R, Liao W, Wu P (2012) Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. J Environ Manag 104:67–76

    CAS  Google Scholar 

  • Youcai Z, Lijie S, Guojian L (2002) Chemical stabilization of MSW incinerator fly ashes. J Hazard Mater 95:47–63

    Google Scholar 

  • Yvon J, Antenucci D, Jdid E, Lorenzi G, Dutre V, Leclerq D, Nielsen P, Veschkens M (2006) Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders. J Geochem Explor 90:143–155

    CAS  Google Scholar 

  • Zacco A, Gianoncelli A, Ardesi R, Sacrato S, Guerini L, Bontempi E, Tomasoni G, Alberti M, Depero LE (2012) Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: first results about reuse. Clean Technol Environ Policy 14:291–297

    CAS  Google Scholar 

  • Zacco A, Borgese L, Gianoncelli A, Struis R, Depero LE, Bontempi E (2014) Review of fly ash inertisation treatments and recycling. Environ Chem Lett 12:153–175

    CAS  Google Scholar 

  • Zhang T, Zhao Z (2014) Optimal use of MSWI bottom ash in concrete. Int J Concr Struct Mater 8(2):173–182

    CAS  Google Scholar 

  • Zhang F, Yamasaki S, Nanzyo M (2002) Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Sci Total Environ 284:215–225

    CAS  Google Scholar 

  • Zheng L, Wang C, Wang W, Shi Y, Gao X (2011) Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manage 31:311–317

    CAS  Google Scholar 

  • Zhu F, Takaoka M, Oshita K, Takeda N (2009) Comparison of two types of municipal solid waste incinerator fly ashes with different alkaline reagents in washing experiments. Waste Manag 29:259–264

    CAS  Google Scholar 

  • Zhu F, Takaoka M, Oshita K, Kitajima Y, Inada Y, Morisawa S, Tsuno H (2010) Chlorides behavior in raw fly ash washing experiments. J Hazard Mater 178:547–552

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Margallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margallo, M., Taddei, M.B.M., Hernández-Pellón, A. et al. Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Techn Environ Policy 17, 1333–1353 (2015). https://doi.org/10.1007/s10098-015-0961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0961-6

Keywords

Navigation