Skip to main content

Advertisement

Log in

Forward osmosis: an alternative sustainable technology and potential applications in water industry

  • Brief Report
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This paper presents an advancing sustainable membrane-based separation process, which is forward osmosis (FO). The review begins with an introduction of the basic principles of the FO process. Then, a comparison to the most currently well-known desalination technology (RO) is presented. Following section summarizes potential applications of FO in the water desalination field, producing either potable water or irrigation water from brackish/saline feeds. Next, two major FO applications in the domain of water reuse are discussed: wastewater and industrial applications. Wastewater applications are such as OSMBR and landfill leachate treatment; and Industrial applications include oil and gas, pharmaceutical, and food and beverage industries. These different FO applications are briefly reviewed and assessed. Although FO has attracted growing attention in many potential applications, it still experiences several considerable limitations, including concentration polarization, membrane fouling, reverse solute diffusion, and need for membrane and draw solution development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Achilli A, Cath TY, Marchand EA, Childress AE (2009) The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination 239(1–3):10–21. doi:10.1016/j.desal.2008.02.022

    Article  CAS  Google Scholar 

  • Achilli A, Cath TY, Childress AE (2010) Selection of inorganic-based draw solutions for forward osmosis applications. J Membr Sci 364(1–2):233–241. doi:10.1016/j.memsci.2010.08.010

    Article  CAS  Google Scholar 

  • Altaee A, Zaragoza G, van Tonningen HR (2014) Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 336:50–57. doi:10.1016/j.desal.2014.01.002

    Article  CAS  Google Scholar 

  • Amarasinghe UA, Smakhtin V (2014) Global water demand projections: past, present and future. International Water Management Institute (IWMI). Accessed from http://www.iwmi.cgiar.org/publications/iwmi-research-reports/iwmi-research-report-156/

  • Cath T, Childress A, Elimelech M (2006) Forward osmosis: Principles, applications, and recent developments. J Membr Sci 281(1–2):70–87. doi:10.1016/j.memsci.2006.05.048

    Article  CAS  Google Scholar 

  • Cath TY, Hancock NT, Lundin CD, Hoppe-Jones C, Drewes JE (2010) A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J Membr Sci 362(1–2):417–426. doi:10.1016/j.memsci.2010.06.056

    Article  CAS  Google Scholar 

  • Chung T-S, Zhang S, Wang KY, Su J, Ling MM (2012) Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81. doi:10.1016/j.desal.2010.12.019

    Article  CAS  Google Scholar 

  • Coday B, Cath T (2014) Forward osmosis: novel desalination of produced water and fracturing flowback. J—Am Water Works Assoc 106:E55–E66. doi:10.5942/jawwa.2014.106.0016

    Article  Google Scholar 

  • Coday B, Holloway R, Herron J, Schutter M, LAmpi K, Cath T (2014) Progress in the investigation of complex FO applications: UFO-MBR and reclamation of O&G wastewater. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, Portugal

  • Coday B, Xu P, Beaudry E, Herron J, Lampi K, Hancock NT, Cath TY (2014b) The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 333(1):23–35. doi:10.1016/j.desal.2013.11.014

    Article  CAS  Google Scholar 

  • Cui Y, Ge Q, Liu X-Y, Chung T-S (2014) Novel forward osmosis process to effectively remove heavy metal ions. J Membr Sci 467:188–194. doi:10.1016/j.memsci.2014.05.034

    Article  CAS  Google Scholar 

  • Duranceau SJ (2012) Emergence of forward osmosis and pressure-retarded osmotic processes for drinking water treatment. Florida Water Resour J. Accessed from http://www.fwrj.com/techarticles/0712%20tech%201.pdf

  • FAO (2005) Fertilizer use by crop in Egypt. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ge Q, Ling M, Chung T-S (2013) Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. J Membr Sci 442:225–237. doi:10.1016/j.memsci.2013.03.046

    Article  CAS  Google Scholar 

  • Ge Q, Fu F, Chung T-S (2014) Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Res 58:230–238. doi:10.1016/j.watres.2014.03.024

    Article  CAS  Google Scholar 

  • Gray GT, McCutcheon JR, Elimelech M (2006) Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197(1–3):1–8. doi:10.1016/j.desal.2006.02.003

    Article  CAS  Google Scholar 

  • Jin X (n.d.) Food & Health Innovation Service—Technology Alert, University of Glasgow, UK. http://www.foodhealthinnovation.com/media/7839/fhis_university_of_glasgow_-_membranes_2013.pdf

  • Kafkafi U, Tarchitzky J (2011) Fertigation: a tool for efficient fertilizer and water management, 1st edn. International Fertilizer Industry Association and International Potash Institute, Paris

    Google Scholar 

  • Lampi K (2014) Thinking out of the box—innovations of forward osmosis. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, Portugal

  • Lampi K, Shethji J (2014) Forward osmosis industial wastewater treatment: landfill leachate and oil and gas porduced waters. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, Portugal

  • Lay WCL, Chong TH, Tang CY, Fane AG, Zhang J, Liu Y (2010) Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Sci Technol 61(4):927. doi:10.2166/wst.2010.835

    Article  CAS  Google Scholar 

  • Lay WCL, Zhang J, Tang C, Wang R, Liu Y, Fane AG (2012) Factors affecting flux performance of forward osmosis systems. J Membr Sci 394–395:151–168. doi:10.1016/j.memsci.2011.12.035

    Article  Google Scholar 

  • Lee S, Boo C, Elimelech M, Hong S (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 365(1–2):34–39. doi:10.1016/j.memsci.2010.08.036

    Article  CAS  Google Scholar 

  • Lutchmiah K, Verliefde ARD, Roest K, Rietveld LC, Cornelissen ER (2014) Forward osmosis for application in wastewater treatment: a review. Water Res 58:179–197. doi:10.1016/j.watres.2014.03.045

    Article  CAS  Google Scholar 

  • McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 174(1):1–11. doi:10.1016/j.desal.2004.11.002

    Article  CAS  Google Scholar 

  • McCutcheon JR, McGinnis RL, Elimelech M (2006) Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J Membr Sci 278(1–2):114–123. doi:10.1016/j.memsci.2005.10.048

    Article  CAS  Google Scholar 

  • McGinnis RL, Elimelech M (2007a) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382. doi:10.1016/j.desal.2006.08.012

    Article  CAS  Google Scholar 

  • McGinnis RL, Elimelech M (2007b) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382. doi:10.1016/j.desal.2006.08.012

    Article  CAS  Google Scholar 

  • McGinnis RL, Elimelech M (2008) Global challenges in energy and water supply: the promise of engineered osmosis. Environ Sci Technol 42(23):8625–8629. doi:10.1021/es800812m

    Article  CAS  Google Scholar 

  • McGovern RK, Lienhard VJH (2014) On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J Membr Sci 469:245–250. doi:10.1016/j.memsci.2014.05.061

    Article  CAS  Google Scholar 

  • Mizuno H, Kansha Y, Kishimoto A, Tsutsumi A (2013) Thermal seawater desalination based on self-heat recuperation. Clean Technol Environ Policy 15(5):765–769. doi:10.1007/s10098-012-0539-5

    Article  CAS  Google Scholar 

  • Moore BJ, Nicoll PG, Beford MR, Harvey WT (2014) An evaluation of forward osmosis based desalination. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, Portugal

  • Nasr P, Sewilam H (2015) The potential of groundwater desalination using forward osmosis for irrigation in Egypt. Clean Technol Environ Policy. doi:10.1007/s10098-015-0902-4

    Google Scholar 

  • Petrotos KB, Lazarides HN (2001) Osmotic concentration of liquid foods. J Food Eng 49(2):201–206

    Article  Google Scholar 

  • Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44(13):5170–5176. doi:10.1021/es100901n

    Article  CAS  Google Scholar 

  • Phuntsho S (2012) A novel fertiliser drawn forward osmosis desalination for fertigation (Doctoral of Philosophy Thesis). University of Technology, Sydney (UTS), New South Wales, Australia. Accessed from http://epress.lib.uts.edu.au/research/handle/10453/21808

  • Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S (2011a) A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. J Membr Sci 375(1–2):172–181. doi:10.1016/j.memsci.2011.03.038

    Article  CAS  Google Scholar 

  • Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S, Kandasamy J (2011b) Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Rev Environ Sci Bio/Technol. doi:10.1007/s11157-011-9259-2

    Google Scholar 

  • Phuntsho S, Shon HK, Majeed T, El Saliby I, Vigneswaran S, Kandasamy J, Lee S (2012) Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environ Sci Technol 46(8):4567–4575. doi:10.1021/es300002w

    Article  CAS  Google Scholar 

  • Qiu C, Setiawan L, Wang R, Tang CY, Fane AG (2012) High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination 287:266–270. doi:10.1016/j.desal.2011.06.047

    Article  CAS  Google Scholar 

  • Setiawan L, Wang R, Li K, Fane AG (2011) Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 369(1–2):196–205. doi:10.1016/j.memsci.2010.11.067

    Article  CAS  Google Scholar 

  • Siew A (2013) Controlling drug release through osmotic systems. Pharm Technol 37(7):40–44

    CAS  Google Scholar 

  • Su J, Zhang S, Ling MM, Chung T-S (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Environ Policy 14(4):507–511. doi:10.1007/s10098-012-0486-1

    Article  CAS  Google Scholar 

  • Tan CH, Ng HY (2010) A novel hybrid forward osmosis nanofiltration process for seawater desalination: draw solution selection and system configuration.pdf. Desalin Water Treat 13(1–3):356–361. doi:10.5004/dwt.2010.1733

    Article  CAS  Google Scholar 

  • Thompson NA, Nicoll PG (2011) Forward osmosis desalination: a commercial reality. Presented at the Perth Convention and Exhibition Centre (PCEC, Perth, Australia), IDA World Congress

  • UNESCO (2012) Managing water under uncertainty and risk (The United Nations World Water Development Report 4 No. 1), UNESCO, Paris

  • US EPA (2012) Water-Energy Connection| Region 9: |. Accessed 4 April 2014 http://www.epa.gov/region9/waterinfrastructure/waterenergy.html

  • Valladares Linares R, Li Z, Sarp S, Bucs SS, Amy G, Vrouwenvelder JS (2014) Forward osmosis niches in seawater desalination and wastewater reuse. Water Res 66:122–139. doi:10.1016/j.watres.2014.08.021

    Article  CAS  Google Scholar 

  • Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1–2):158–167. doi:10.1016/j.memsci.2010.03.017

    Article  CAS  Google Scholar 

  • Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G (2011) Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination 280(1–3):160–166. doi:10.1016/j.desal.2011.06.066

    Article  CAS  Google Scholar 

  • Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818. doi:10.1021/es1002555

    Article  CAS  Google Scholar 

  • Zhao S, Zou L (2011) Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J Membr Sci 379(1–2):459–467. doi:10.1016/j.memsci.2011.06.021

    Article  CAS  Google Scholar 

  • Zhao S, Zou L, Mulcahy D (2012a) Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination 284:175–181. doi:10.1016/j.desal.2011.08.053

    Article  CAS  Google Scholar 

  • Zhao S, Zou L, Tang CY, Mulcahy D (2012b) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21. doi:10.1016/j.memsci.2011.12.023

    Article  CAS  Google Scholar 

  • Zhong P, Fu X, Chung T-S, Weber M, Maletzko C (2013) Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environ Sci Technol. doi:10.1021/es4013273

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Mr. Yousef Jameel for PhD fellowship award in Environmental Engineering program. Gratitude is further extended to the Center of Sustainable Development members for their constant guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nasr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, P., Sewilam, H. Forward osmosis: an alternative sustainable technology and potential applications in water industry. Clean Techn Environ Policy 17, 2079–2090 (2015). https://doi.org/10.1007/s10098-015-0927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0927-8

Keywords

Navigation