Skip to main content
Log in

Modified ZnO nanoparticles with new modifiers for the removal of heavy metals in water

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

We prepared novel ZnO nanoparticles (NPs) modified with humic acid (Zn-H), extractant of Walnut shell (ZN-W) and 1,5 diphenyl carbazon (Zn-C). Three modified nanoparticles (MNPs) were characterized by SEM, XRD, FT-IR spectra, and EDX analysis. The images showed that Zn-H, Zn-W, and Zn-C particles had mean diameters of about 52, 56, and 76 nm, respectively. We explored the ability of the MNPs for removing heavy metal ions (Cd2+, Cu2+, and Ni2+) from aqueous phase in single and multiple solutions. Based on the average metal removal by the three NPs, the following order was determined for single and multiple component solutions: Cu2+ > Cd2+ > Ni2+. We investigated the adsorption capacity of MNPs as a function of contact time, pH, and metal ions concentration (isotherm). Among different isotherm models, it was found that the Langmuir model showed better correlation with the experimental data than Freundlich model. Spectroscopic analyses such as SEM–EDX and saturation indexes have been investigated to study the mechanism of sorption of metal ions by MNPs. The high adsorption capacities of the MNPs shown from the results make them promising candidates for removal of the tested heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    Article  CAS  Google Scholar 

  • Afkhami A, Bagheri H, Madrakian T (2011) Alumina nanoparticles grafted with functional groups as a new adsorbent in efficient removal of formaldehyde from water samples. Desalination 281:151–158

    Article  CAS  Google Scholar 

  • Ahn CK, Park D, Woo SH, Park JM (2009) Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J Hazard Mater 164:1130–1136

    Article  CAS  Google Scholar 

  • Allison JD, Brown DS, Novo-Gradac K (1991) MINTEQA2 = PRODEFA2—a geochemical assessment model for environmental systems—version 3.11 databases and version 3.0. User’s manual, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga

  • Ang XW, Sethu VS, Andresen JM, Sivakumar M (2013) Copper (II) ion removal from aqueous solutions using biosorption technology: thermodynamic and SEM–EDX studies. Clean Technol Environ Policy 15:401–407

    Article  CAS  Google Scholar 

  • Aravindhan R, Fathima A, Selvamurugan M, Rao JR, Balachandran UN (2012) Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass. Clean Technol Environ Policy 14:727–735

    Article  CAS  Google Scholar 

  • Arief VO, Trilestori K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: character rization, biosorption parameters and mechanism studies. Clean Technol Environ Policy 12:937–962

    Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Article  Google Scholar 

  • Banerjee SS, Chen DH (2007) Fast removal of Copper ions by gum Arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799

    Article  CAS  Google Scholar 

  • Celis R, Hermosian MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34:4593–4599

    Article  CAS  Google Scholar 

  • Chen Q, Yin D, Zhu S, Hu X (2012) Adsorption of cadmium(II) on humic acid coated titanium dioxide. J Colloid Interface Sci 367:241–248

    Article  CAS  Google Scholar 

  • Debnath S, Ghosh UC (2011) Equilibrium modeling of single and binary adsorption of Cd(II)and Cu(II) on to agglomerated nano structured titanium(IV) oxide. Desalination 273:330–342

    Article  CAS  Google Scholar 

  • Essington ME (2008) Soil and water chemistry: an integrative approach. CRC Press, Boca Raton, p 534

    Google Scholar 

  • Ezoddina M, Shemirania F, Abdib Kh, Khosravi SM, Jamalic MR (2010) Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd2+ and Pb2+ in water and herbal samples prior to flame atomic absorption spectrometry determination. J Hazard Mater 178:900–905

    Article  Google Scholar 

  • Farajzadeh MA, Monji AB (2004) Adsorption characteristics of wheat bran towards heavy metals cations. Sep Purif Technol 38:197–207

    Article  CAS  Google Scholar 

  • Ge F, Li MM, Ye H, Zha BX (2012) Effective removal of heavy metals ion Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372

    Article  Google Scholar 

  • Guerra DL, Airoldi C, de Sousa KS (2008) Adsorption and thermodynamic studies of Cu(II) and Zn(II) on organofunctionalized-kaolinite. Appl Surf Sci 254:5157–5163

    Article  CAS  Google Scholar 

  • Guo XY, Zhang SZ, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 15:134–142

    Article  Google Scholar 

  • Gupta RK, Nayak A (2012) Cadmium removal and recovery from aqueous solution by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Hammaini A, Gonza lez F, Ballester A, Blázquez ML, Muñoz JA (2007) Biosorption of heavy metals by activated sludge and their desorption characteristics. J Environ Manag 84:419–426

    Article  CAS  Google Scholar 

  • Hooda P (2010) Trace elements in soils. Blackwell Publishing Ltd, Oxford 595

    Book  Google Scholar 

  • Kardam A, Rohit Raj K, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  • Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR (2008) Removal of lead, cadmium, zinc and copper from industrial waste water by carbon developed from walnut hazelnut, almond, pistachio shell, and apricot stone. J Hazard Mater 150:322–327

    Article  CAS  Google Scholar 

  • Kim JW, Sohn MH, Kim DS, Sohn SM, Kwon YS (2001) Production of granular activated carbon from waste walnut shell and it, s adsorption characteristics of Cu2+ ion. J Hazard Mater B 85(3):301–315

    Article  CAS  Google Scholar 

  • Klavins M, Purmalis O (2010) Humic substances as surfactants. Environ Chem Lett 8:349–354

    Article  CAS  Google Scholar 

  • Liang L, Zhang S (2011) Adsorption and desorption of humic and fulvic acid on SiO2 particles at nano and micro-scales. Colloids Surf A: Physicochem Eng Asp 384:126–130

    Article  CAS  Google Scholar 

  • Liu JF, Zhao ZSN, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  • Madrakian T, Afkhami A, Ahmadi M (2013) Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere 90:542–547

    Article  CAS  Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J Nanopart Res 14:1–18

  • Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470

    Article  CAS  Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2015) Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 17:85–102

  • Malkoc E, Nuhoglu Y (2005) Nickel) removal from aqueous solution using tea factory waste. J Hazard Mater 127:120–128

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2006) Ni (II) removal from aqueous solutions using cone biomass of Thuja Orientalis. J Hazard Mater 137:899–908

    Article  CAS  Google Scholar 

  • Mata YN, Blazquez ML, Ballester A, Gonzales F, Munzor JA (2009) Sugar beet pulp pectin gels as biosorbent and desorption character rustics. Chem Eng J 150:289–301

    Article  CAS  Google Scholar 

  • Mc Bridge MB (1994) Environmental chemistry of soils. Oxford University Press, New York, p 406

    Google Scholar 

  • Mei HY, Man C, Bo HZ (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184:392–399

    Article  Google Scholar 

  • Merrikhpour H, Jalali M (2013) Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol Environ Policy 15:303–316

    Article  CAS  Google Scholar 

  • Najafia M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205

    Article  Google Scholar 

  • Ozmen M, Can K, Arslan G, Tor A, Cengeloglu Y, Ersoz M (2010) Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254:162–169

    Article  CAS  Google Scholar 

  • Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticles (Fe3O4) impregnated on to tea waste for the removal of Ni2+ from aqueous solutions. J Hazard Mater 186:160–168

    Article  CAS  Google Scholar 

  • Pehlivan E, Cetin S, Yank BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater B135:193–199

    Article  Google Scholar 

  • Peng LP, Qin M, Lei Q, Zeng H, Song J, Yang J, Shao B, Liao JGu (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–2010:193–198

    Article  Google Scholar 

  • Phuengprasop T, Sittiwong J, Unob F (2011) Removal of heavy metals ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507

    Article  CAS  Google Scholar 

  • Rahmani A, Zavvar Mosavi H, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100

    Article  CAS  Google Scholar 

  • Remenárová L, Pipíška M, Florková E, Horník M, Rozložník M, Augustín J (2014) Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol Environ Policy. doi:10.1007/s10098-014-0728-5

    Google Scholar 

  • Sharma YC, Srivastava V (2011) Comparative studies of removal of Cr(VI) and Ni(II) from aqueous solutions by magnetic nanoparticles. J Chem Eng Data 56:819–825

    Article  CAS  Google Scholar 

  • Sharma YC, Srivastava V, Upadhyay SN, Weng CH (2008) Alumina nanoparticles for the removal of Ni (II) from aqueous solution. Ind Eng Chem Res 4780:95–8100

    Google Scholar 

  • Sharma YC, Srivastava V, Weng CH, Upadhyay SN (2009) Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. Can J Chem Eng 87:921–929

    Article  CAS  Google Scholar 

  • Sparks D (2003) Environmental soil chemistry, 2nd edn. Academic Press, Waltham, p 352

    Google Scholar 

  • Sudilovskiy PS, Kagramanov GG, Trushin AM, Kolesnikov VA (2007) Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration. Clean Technol Environ Policy 9:189–198

    Article  CAS  Google Scholar 

  • Tan KH (1998) Principles of soil chemistry. Marcel Dekker Inc, New York, p 521

    Google Scholar 

  • Vidal M, Santos MJ, Abrao T, Rodriguez J, Rigol A (2009) Modeling competitive metal sorption in a mineral soil. Geoderma 149:189–198

    Article  CAS  Google Scholar 

  • Wingenfelder U, Hansen C, Furrer G, Urrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environ Sci Technol 39:4606–4613

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw ISRN Ecol Volume 2011, Article ID 402647, p 20

  • Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, Du B, Li H (2012) Highly efficient removal of heavy metal ion by amine functionalized mesoporous Fe3O4 nanoparticles. Chem Eng J 184:132–140

    Article  CAS  Google Scholar 

  • Yuwei C, Jialong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and it, s application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  • Zhou YT, Nie HL, White CB, He ZY, Zhu LM (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330:29–37

    Article  CAS  Google Scholar 

  • Zhu S, Yang N, Zhang D (2009) Poly (N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal. Mater Chem Phys 113:784–789

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, S., Afkhami, A. & Merrikhpour, H. Modified ZnO nanoparticles with new modifiers for the removal of heavy metals in water. Clean Techn Environ Policy 17, 1645–1661 (2015). https://doi.org/10.1007/s10098-015-0898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0898-9

Keywords

Navigation