Skip to main content

Advertisement

Log in

CFD models in the development of electrical waste recycling technologies

  • Original paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Nowadays electrical waste (EW) recycling has become a practical way to provide raw material for new devices. Computer parts such as memory, motherboard or other parts contain large amount of metals from which the recovery of precious metals and copper represents the highest economical potential. With a proper chemical treatment these metals can be efficiently extracted and separated from the actual waste. For this task a specially designed leaching reactor, equipped with a perforated rotating drum, was used. This work is aimed at investigating if computational fluid dynamics (CFD) tools can be efficiently applied to model the chemical reactor used to dissolve the metals from the EW. First a hybrid CFD-compartment approach was developed to describe the dissolution process in the leaching reactor while the CFD models were used to model the hydrodynamics of the process. Based on the detailed model containing momentum and component mass balance the developed simulator could be used to enhance the performance of the existing reactor system. For the modelling studies COMSOL Multiphysics was used as CFD software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Solid surface (m2)

C B :

Equipment base cost ($)

C E :

Equipment cost ($)

CE1 :

Equipment cost in year 1 ($)

CE2 :

Equipment cost in year 2 ($)

c i :

Molar concentration (mol m−3mol/m3)

c in,i :

Inlet concentration (mol m−3mol/m3)

c out,i :

Outlet concentration (mol/ m−3)

E ai :

Activation Energy [J/ (mol−1K)]

F in,i :

Inlet flow rate (m3/ s−1)

f M :

Correction factor for materials of construction (1)

F out,i :

Outlet flow rate (m3 /s−1)

f P :

Correction factor for design pressure (1)

f T :

Correction factor for design temperature (1)

INDEX1 :

Cost index in year 1 (1)

INDEX2 :

Cost index in year 2 (1)

k 0i1 :

Pre-exponential constants (m(1·ni) mol(1 − ni) s−1)

k i :

Reaction rate constants (m(1·ni) mol(1 − ni) s−1)

M :

Constant depending on equipment type (1)

m i :

Mass concentration (g m−3g/m3)

Mi :

Molecular mass (kg/ mol−1)

N :

Revolution speed (min−1)

n i :

Reaction order (1)

Q :

Designed equipment capacity (m−3, kW)

Q B :

Equipment base capacity (m−3, kW)

Re :

Re number (1)

r i :

Reaction rate (mol m−3 s−1)

V :

Volume (m3)

α :

Distribution ratio (1)

References

  • Babar ZB, Shareefdeen Z (2014) Management and control of air emissions from electronic industries. Clean Technol Environ Policy 16:69–77

  • Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize palladium and gold leaching and precipitation. Waste Manag 33:2354–2363

    Article  CAS  Google Scholar 

  • Bereketli I, Erol Genevois M, Esra Albayrak Y, Ozyol M (2011) WEEE treatment strategies’ evaluation using fuzzy LINMAP method. Expert Syst Appl 38:71–79

    Article  Google Scholar 

  • Bigum M, Brogaard L, Christensen TH (2012) Metal recovery from high-grade WEEE: a life cycle assessment. J Hazard Mater 207–208:8–14

    Article  Google Scholar 

  • Chiang S-Y, Wei C–C, Chiang T-H, Chen W-L (2010) How can electronics industries become green manufacturers in Taiwan and Japan. Clean Technol Environ Policy 13:37–47

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  CAS  Google Scholar 

  • Delafosse A, Delvigne F, Collignon M-L, Thonart P, Crine D (2010) Stochastic modeling of a micro-organism displacements in a stirred-tank bioreactor. In: Proceedings of CHISA 2010 Prague P5.76

  • Egedy A, Varga T, Chován T (2013) Compartment model structure identification with qualitative methods for a stirred vessel. Math Comput Model Dyn 19:115–132

    Article  Google Scholar 

  • Fogarasi SZ, Imre-Lucaci F, Ilea P (2012a) Metals leaching from waste printed circuit boards. Part I: efficiency and selectivity in FeCl3 and CuCl2 acidic solutions. Stud Univ Babes-Bol LVII(3):31–40

    Google Scholar 

  • Fogarasi Sz, Imre-Lucaci F, Ilea P (2012b) Metals leaching from waste printed circuit boards. Part II: influence of thiourea, thiosulfate and thiocyanate concentration on the leaching process. Stud Univ Babes-Bol LVII(3):41–49

    Google Scholar 

  • Fogarasi Sz, Imre-Lucaci F, Ilea P (2012c) Eco-friendly leaching of base metals from waste printed circuit boards: experimental study and mathematical modeling. Stud Univ Babes-Bol LVII:91–100

    Google Scholar 

  • Guha D, Dudukovic MP, Ramachandran PA, Mehta S, Alvare J (2006) CFD based compartmental modelling of single phase stirred tank reactors. AIChE J 52:1836–1846

    Article  CAS  Google Scholar 

  • Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–408

    Article  CAS  Google Scholar 

  • Kanniche M (2010) Coupling CFD with chemical reactor network for advanced NOx prediction in gas turbine. Chem Technol Environ Policy 12:661–670

    Article  CAS  Google Scholar 

  • Kim EY, Kim MS, Lee JC, Pandey BD (2011a) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215

    Article  CAS  Google Scholar 

  • Kim EY, Kim MS, Lee JC, Jeong J, Pandey BD (2011b) Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy 107:124–132

    Article  CAS  Google Scholar 

  • Kramer HJM, Dijkstra JW, Verheijen PJT, Van Rosmale GM (2000) Modeling of industrial crystallizers for control and design purposes. Powder Technol 108:185–191

    Article  CAS  Google Scholar 

  • Li J, Uttarwar RG, Huang Y (2013) CFD-based modeling and design for energy-efficient VOC emission reduction in surface coating systems. Chem Technol Environ Policy 15:1023–1032

    Article  Google Scholar 

  • Lirii M, Hatakka H, Kallas J, Aittamaa J, Alopaeus V (2010) Modelling of crystal growth of KDP in a 100 dm3 suspension crystallizer using combination of CFD and multiblock model. Chem Eng Res Des 88:1297–1303

    Article  Google Scholar 

  • Long L, Sun S, Zhong S, Dai W, Liu J, Song W (2010) Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J Hazard Mater 177:626–632

    Article  CAS  Google Scholar 

  • Maggioris D, Goulas A, Alexopoulos AH, Chatzi EG, Kiparissides C (2008) Use of CFD in prediction of particle size distribution in suspension polymer reactors. Comput Chem Eng 22:315–322

    Article  Google Scholar 

  • Martinez-Delgadillo S, Mollinedo-Ponce H, Mendoza-Escamilla V, Gutiérrez-Torres C, Jiménez-Bernal J, Barrera-Diaz C (2012) Performance evaluation of an electrochemical reactor used to reduce Cr(VI) from aqueous media applying CFD simulations. J Clean Prod 34:120–124

    Article  CAS  Google Scholar 

  • Miltner M, Makaruk A, Harasek M, Friedl A (2008) Computational fluid dynamic simulation of solid biomass combustor: modelling approaches. Clean Technol Environ Policy 10:165–174

    Article  CAS  Google Scholar 

  • Oguchi M, Sakanakura H, Terazono A, Takigami H (2012) Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process. Waste Manag 32:96–103

    Article  CAS  Google Scholar 

  • Smith R (2005) Chemical process design and integration. Wiley, Chichester

    Google Scholar 

  • Tamburini A, Cipollina A, Micale G (2011) CFD simulation of solid liquid suspensions in baffled stirred vessels below complete suspension speed. Chem Eng Trans 24:1435–1440

    Google Scholar 

  • Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25:28–37

    Article  CAS  Google Scholar 

  • Van Parys H, Tourwé E, Breugelmans T, Fepauw M, Deconick J, Hubin A (2008) Modeling of mass and charge transfer in an inverted rotating disc electrode (IRDE) reactor. J Electroanal Chem 622:44–50

    Article  Google Scholar 

  • Varga T, Abonyi J (2013) Improvement of PSO algorithm by memory based gradient search application in inventory management. Swarm Int Bio Inspired Comput Theory Appl. doi:10.1016/B978-0-12-405163-8.00019-3

    Google Scholar 

  • Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    Article  CAS  Google Scholar 

  • Yang J, Wu Y, Li J (2012) Recovery of copper particles from metal components of waste printed circuit boards. Hydrometallurgy 121–124:1–6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union and financed by the European Social Fund in the frame of the TÉT_12_RO-1-2013-0017 and TAMOP-4.2.2/A-11/1/KONV-2012-0071 projects. Tamás Varga’s research activity in this work was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Egedy.

Appendix

Appendix

See Table 4.

Table 4 The relationships between the revolution speeds and the distribution ratios (N refers to the revolution speed (min−1))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egedy, A., Fogarasi, S., Varga, T. et al. CFD models in the development of electrical waste recycling technologies. Clean Techn Environ Policy 16, 1255–1263 (2014). https://doi.org/10.1007/s10098-014-0816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0816-6

Keywords

Navigation