Skip to main content
Log in

Spark spectrometry of toxic smokes: towards a portable, inexpensive, and high-resolution environment monitoring instrument

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy are the most popular techniques for monitoring toxic gases in the environments. Apart from sensitivity and resolution of the techniques, they suffer from several issues including portability and high cost. For design and realization of a low cost, spark spectrometry based portable instrument for monitoring toxic gases in our environments is the main motive of the present work. We have introduced several toxic smokes into a gas chamber containing our developed instrument. We have also investigated the capability of the instrument for online analysis of suspended particulate matter as well as various gaseous elements in the smokes. We have also developed software for the practical interface. The apparatus has been successfully tested to monitor several toxic fumes including cigarette smoke and NO x . It has also been demonstrated that the instrument is equally efficient to monitor air quality in the open environment, for example, presence of nitrogen, oxygen, and water vapor in the ambient condition. In the present work, we have demonstrated some important spectroscopic studies including role of water vapor (solvation) in the ionization of potassium, which is an active ingredient of toxic smokes, in the ionization which leading to the generation of atomic emission under the spark spectrometer can also be achieved with our instrument. The sensitivity of the instrument is found to be sub ppm (0.27 ± 0.13 ppm) in the case of cigarette smoke in ambient condition. The simplicity and extremely cost-effective design can provide an alternative method of detection of fumes in air and can serve as a cheap alternative for costly/bulky bench-top instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Álvarez-Llamas G, Fernández de laCampa MadR, Sanz-Medel A (2005) ICP-MS for specific detection in capillary electrophoresis. TrAC Trends Anal Chem 24(1):28–36. doi:10.1016/j.trac.2004.09.007

    Article  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15(4):955–966

    Article  CAS  Google Scholar 

  • Bachmann R, Ottinger C, Vilesov AF (1993) A new band system of nitrogen: observation of the N2G3g → W3u transition. J Chem Phys 99(5):3262–3267

    Article  CAS  Google Scholar 

  • Bonn G (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. 46–56

  • Boyle P (1997) Cancer, cigarette smoking and premature death in Europe: a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer 17(1):1–60. doi:10.1016/S0169-5002(97)00648-X

    Article  CAS  Google Scholar 

  • Cao J, Yang C, Li J, Chen R, Chen B, Gu D, Kan H (2011) Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study. J Hazard Mater 186(2):1594–1600

    Article  CAS  Google Scholar 

  • Chang MJ, Naworal JD, Walker K, Connell CT (2003) Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 58(11):1979–1996

    Article  Google Scholar 

  • Chang MJ, Naworal JD, Connell CT (2006) Direct introduction of cigarette smoke for puff-by-puff trace metals analysis by inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(6):574–581

    Article  CAS  Google Scholar 

  • Coquart B, Jenouvrier A, Merienne MF (1995) The NO2 absorption spectrum. II. Absorption cross-sections at low temperatures in the 400–500 nm region. J Atmos Chem 21(3):251–261. doi:10.1007/BF00696757

    Article  CAS  Google Scholar 

  • Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38(9):1275–1282. doi:10.1016/j.atmosenv.2003.11.037

    Article  CAS  Google Scholar 

  • Dube MF, Green C (1982) Methods of collection of smoke for analytical purposes. Recent Adv Tob Sci 8:42–102

    Google Scholar 

  • Estrellan CR, Iino F (2010) Toxic emissions from open burning. Chemosphere 80(3):193–207. doi:10.1016/j.chemosphere.2010.03.057

    Article  CAS  Google Scholar 

  • Fielding JE (1985) Smoking: health effects and control. N Engl J Med 313(8):491–498. doi:10.1056/NEJM198508223130807

    Article  CAS  Google Scholar 

  • Francis P, Maciejewski A, Oppenheimer C, Chaffin C, Caltabiano T (1995) SO2: HCl ratios in the plumes from Mt. Etna and Vulcano determined by Fourier Transform Spectroscopy. Geophys Res Lett 22(13):1717–1720

    Article  CAS  Google Scholar 

  • Frey W, Sack M, Wuestner R, Mueller G (2009) Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching. Acta Phys Pol-Series A 115(6):1016–1018

    CAS  Google Scholar 

  • Fukuchi T (2009) Infrared absorption spectroscopy measurement of SO x using tunable infrared laser. IEEJ Trans Fundam Mater 129:809–814

    Article  Google Scholar 

  • Galanter M, Levy H, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res 105(D5):6633–6653

    Article  CAS  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the Icp-Ms technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16(2):311–315. doi:10.1111/j.1751-908X.1992.tb00494.x

    Article  CAS  Google Scholar 

  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS: a powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. Reference samples. Chem Geol 83(1–2):133–148. doi:10.1016/0009-2541(90)90145-W

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367. doi:10.1016/j.envpol.2007.06.012

    Article  CAS  Google Scholar 

  • Kasuya K, Okayama H, Watanabe M (1999) New method for thin-film formation with cryogenic diode and cryogenic target. Fusion Eng Des 44(1):327–330

    Article  CAS  Google Scholar 

  • Krstulović N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetič M (2006) Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D 39(17):3799–3804

    Article  Google Scholar 

  • Kuffel J, Kuffel E, Zaengl W (2000) High voltage engineering fundamentals. Elsevier Science and Technology Books, Oxford

  • Leahy-Hoppa MR, Miragliotta J, Osiander R, Burnett J, Dikmelik Y, McEnnis C, Spicer JB (2010) Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy. Sensors 10(5):4342–4372

    Article  CAS  Google Scholar 

  • Löfroth G (1989) Environmental tobacco smoke: overview of chemical composition and genotoxic components. Mutat Res-Genet Toxicol 222(2):73–80

    Article  Google Scholar 

  • Marcq E, Bézard B, Drossart P, Piccioni G, Reess J, Henry F (2008) A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of venus: spectroscopic studies using VIRTIS-H. J Geophys Res 113(E5):E00B07(01)–E00B07(09)

    Google Scholar 

  • Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42(34):7823–7843. doi:10.1016/j.atmosenv.2008.07.018

    Article  CAS  Google Scholar 

  • Menad N, Björkman B, Allain EG (1998) Combustion of plastics contained in electric and electronic scrap. Resour Conserv Recycling 24(1):65–85. doi:10.1016/S0921-3449(98)00040-8

    Article  Google Scholar 

  • Menzel DB (1976) The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone). Free Radic Biol 2:181–202

    Article  CAS  Google Scholar 

  • Mérienne MF, Jenouvrier A, Coquart B (1995) The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region. J Atmos Chem 20(3):281–297. doi:10.1007/BF00694498

    Article  Google Scholar 

  • Milosavljević V, Ellingboe A, Daniels S (2011) Influence of plasma chemistry on oxygen triplets. Eur Phys J D 64(2–3):437–445

    Article  Google Scholar 

  • Mohamed WTY (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40(1):30–38. doi:10.1016/j.optlastec.2007.04.004

    Article  CAS  Google Scholar 

  • Partanen L, Mikkelä M-H, Huttula M, Tchaplyguine M, Zhang C, Andersson T, Björneholm O (2013) Solvation at nanoscale: alkali-halides in water clusters. J Chem Phys 138:044301–044308

    Article  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1):71–77

    Article  Google Scholar 

  • Puckrin E, Evans WFJ, Adamson TAB (1996) Measurement of tropospheric ozone by thermal emission spectroscopy. Atmos Environ 30(4):563–568. doi:10.1016/1352-2310(95)00319-3

    Article  CAS  Google Scholar 

  • Ralchenko Y (2005) NIST atomic spectra database. Memorie della Societa Astronomica Italiana Supplementi 8:96–102

    Google Scholar 

  • Regalado J, Pérez-Padilla R, Sansores R, Paramo Ramirez JI, Brauer M, Paré P, Vedal S (2006) The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am J Respir Crit Care Med 174(8):901–905

    Article  Google Scholar 

  • Song K, Lee Y-I, Sneddon J (2002) Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl Spectrosc Rev 37(1):89–117

    Article  CAS  Google Scholar 

  • Vodacek A, Kremens R, Fordham A, VanGorden S, Luisi D, Schott J, Latham D (2002) Remote optical detection of biomass burning using a potassium emission signature. Int J Remote Sens 23(13):2721–2726

    Article  Google Scholar 

  • Wannamethee SG, Lever AF, Shaper AG, Whincup PH (1997) Serum potassium, cigarette smoking, and mortality in middle-aged men. Am J Epidemiol 145(7):598–606

    Article  CAS  Google Scholar 

  • Winter B, Weber R, Hertel IV, Faubel M, Jungwirth P, Brown EC, Bradforth SE (2005) Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc 127(19):7203–7214. doi:10.1021/ja042908l

    Article  CAS  Google Scholar 

  • Y-I LEE, Sneddon J (2002) Recent developments in laser-induced breakdown spectrometry. ISIJ Int 42:S129–S136

    Article  Google Scholar 

  • Zhang C, Andersson T, Svensson S, Björneholm O, Huttula M, Mikkelä M-H, Tchaplyguine M, Öhrwall G (2011) Ionic bonding in free nanoscale NaCl clusters as seen by photoelectron spectroscopy. J Chem Phys 134:124507–124517

    Article  Google Scholar 

  • Zhang C, Andersson T, Svensson S, Björneholm O, Huttula M, Mikkelä M-H, Anin D, Tchaplyguine M, Öhrwall G (2012) Holding onto electrons in alkali metal halide clusters: decreasing polarizability with increasing coordination. J Phys Chem A 116(49):12104–12111. doi:10.1021/jp307786z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. S. acknowledges DST, Govt. of India, for its financial support through IRHPA Project “Study of Cosmic Ray aerosol cloud connection in the context of regional Climate change” at Bose Institute, Darjeeling. We thank Prof. Sibaji Raha, Director, Bose Institute and Prof. Sanjay Kr. Ghosh, Bose Institute for their valuable inputs and their constant support throughout this work. N.P thanks DST, India for Inspire Research Fellowship. We thank DST, India for financial grants (DST/TM/SERI/2k11/103 & SB/S1/PC-011/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 13336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Polley, N., Mitra, A. et al. Spark spectrometry of toxic smokes: towards a portable, inexpensive, and high-resolution environment monitoring instrument. Clean Techn Environ Policy 16, 1703–1712 (2014). https://doi.org/10.1007/s10098-014-0749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0749-0

Keywords

Navigation