Skip to main content

Advertisement

Log in

Optimum synthesis of solvent-based post-combustion CO2 capture flowsheets through a generalized modeling framework

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A generalized framework for the optimal design of post-combustion CO2 capture processes based on a systemic and flexible equilibrium separation model that employs orthogonal collocation on finite elements techniques is proposed. Within this context, a column section of adaptive separation capability and functionality serves as the fundamental structural block for the identification of efficient separation schemes. Separation column sections in combination with heat transfer blocks, as well as stream splitters and mixers enable the generation and evaluation of alternative flowsheet configurations within a nonlinear optimization program. The main objectives for the flowsheet evaluation involve separation and thermal efficiency that eventually impact the economics of the overall process. Vapor–liquid equilibrium calculations are performed using statistical associating fluid theory for potentials of variable range (Mac Dowell et al., Ind Eng Chem Res 49:1883–1899, 2010). The proposed design framework is used for the optimal design of five alternative flowsheet configurations for the separation of CO2 from a flue gas stream using a 30 % weight monoethanolamine aqueous solution. These flowsheets illustrate the various connection patterns between the process units and indicate suitable distribution of process-driving forces through which the overall efficiency can be drastically enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Liquid loading (–)

A HEX :

Heat exchanger area (m2)

AMP:

2-Amino-2-methyl-1-propanol

DEA:

Diethanolamine

DGA:

Diglycolamine

F :

Molar flow rate (mol s−1)

H :

Stream molar enthalpy (J mol−1)

H c :

Column packing height (m)

k :

Process association coefficient (adjacency matrix element)

L :

Liquid molar flow rate (mol s−1)

LMTD:

Logarithmic mean temperature difference (–)

MDEA:

Methyl-diethanolamine

MEA:

Monoethanolamine

ncp:

Number of collocation points in a finite element (–)

NC:

Number of components (–)

NM:

Number of modules (–)

NP:

Number of phases

NS:

Number of sub-streams

NSS:

Number of side-streams

P:

Pressure (kPa)

p :

Split ratio in splitter block (–)

P i :

Vapor pressure of component i (kPa)

PZ:

Piperazine

Q :

Rate of heat loss/heat duty (Watt)

R :

Rate of generation/consumption (mol s−1 m−3)

SF:

Side-feed stream flow (mol s−1)

s :

Column position coordinate (–)

T :

Temperature (K)

TEA:

Triethanolamine

U :

Overall heat transfer coefficient (W m−1 K−1)

V :

Vapor molar flow rate (mol s−1)

W :

Langrange interpolating polynomial (–)

x :

Liquid phase mole fraction (–)

y :

Gas phase mole fraction (–)

φ :

Liquid phase holdup (m3)

b:

Reboiler

in:

Inlet stream

l:

CO2 lean stream

out:

Outlet stream

r:

CO2 rich stream

solv:

Solvent

t:

Total

dep:

Departure

in:

Inlet stream

L:

Liquid phase

out:

Outlet stream

t:

Total

V:

Vapor phase

References

  • Ahn H, Luberti M, Liu Z, Brandani S (2013) Process configuration studies of the amine capture process for coal-fired plants. Int J Greenh Gas Con 16:29–40

    Article  CAS  Google Scholar 

  • Algusane TY, Proios P, Georgiadis MC, Pistikopoulos EN (2006) A framework for the synthesis of reactive absorption columns. Chem Eng Process 45:276–290

    Article  CAS  Google Scholar 

  • Bek-Pedersen E, Gani R (2004) Design and synthesis of distillation systems using a driving-force-based approach. Chem Eng Process 43:251–262

    Article  CAS  Google Scholar 

  • Cousins A, Wardhaugh LT, Feron PHM (2011) A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Int J Greenh Gas Con 5:605–619

    Article  CAS  Google Scholar 

  • Dalaouti N, Seferlis P (2006) A unified modelling framework for the optimal design and dynamic simulation of staged reactive separation processes. Comput Chem Eng 30:1264–1277

    Article  CAS  Google Scholar 

  • Damartzis T, Papadopoulos AI, Seferlis P (2013) Generalized framework for the optimal design of solvent-based post-combustion CO2 capture flowsheets. Chem Eng Transact 35:1177–1182

    Google Scholar 

  • Goharrokhi M, Taghikhami V, Ghotbi C, Safekordi AA, Najibi H (2010) Correlation and prediction of solubility of CO2 in amine solutions. Iran J Chem Eng 29:111–124

    CAS  Google Scholar 

  • Ismail SR, Proios P, Pistikopoulos EN (2001) Modular synthesis framework for combined separation/reaction systems. AIChE J 47:629–649

    Article  CAS  Google Scholar 

  • Jassim MS, Rochelle GT (2006) Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine. IndEngChem Res 45:2465–2472

    CAS  Google Scholar 

  • Kenig E, Seferlis P (2009) Modeling reactive absorption. Chem Eng Prog January 2009:65–73

  • Le Moullec Y, Kanniche M (2011) Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture. Int J Greenh Gas Con 5:727–740

    Article  Google Scholar 

  • Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A (2010) Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind Eng Chem Res 49:1883–1899

    Article  CAS  Google Scholar 

  • Murtagh BA, Saunders MA (1998) MINOS 5.5 User’s guide. technical report SOL 83-20R. Stanford University

  • Neveux T, Le Moullec Y, Corriou JP, Favre E (2013) Energy performance of CO2 capture processes: interaction between process design and solvent. Chem Eng Transact 35:337–342

    Google Scholar 

  • Nuchitprasittichai A, Cremaschi S (2011) Optimization of CO2 capture process with aqueous amines using response surface methodology. Comput Chem Eng 35:1521–1531

    Article  CAS  Google Scholar 

  • Oyenekan BA (2007) Modeling of strippers for CO2 capture by aqueous amines (PhD Thesis). University of Texas, Austin, TX, USA

  • Oyenekan BA, Rochelle GT (2006) Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res 45:2457–2464

    Article  CAS  Google Scholar 

  • Oyenekan BA, Rochelle GT (2007) Alternative stripper configurations for CO2 capture by aqueous amines. AIChE J 53:3144–3154

    Article  CAS  Google Scholar 

  • Papadopoulos AI, Linke P (2004) On the synthesis and optimization of liquid–liquid extraction processes using stochastic search methods. Comput Chem Eng 28:2391–2406

    Article  CAS  Google Scholar 

  • Papadopoulos AI, Linke P (2009) Integrated solvent and process selection for separation and reaction-separation processes. Chem Eng Process 48:1047–1060

    Article  CAS  Google Scholar 

  • Papadopoulos AI, Seferlis P (2009) Generic modelling, design and optimization of industrial phosphoric acid production processes. Chem Eng Process 48:493–506

    Article  CAS  Google Scholar 

  • Plaza JM, Van Wagener D, Rochelle GT (2010) Modeling CO2 capture with aqueous monoethanolamine. Int J Greenh Gas Con 4:161–166

    Article  CAS  Google Scholar 

  • Prayoonyong P, Jobson M (2011) Flowsheet synthesis and complex distillation column design for separating ternary heterogeneous azeotropic mixtures. Chem Eng Res Des 89:1362–1376

    Article  CAS  Google Scholar 

  • Proios P, Pistikopoulos EN (2006) Hybrid generalized modular/collocation framework for distillation column synthesis. AIChE J 52:1038–1056

    Article  CAS  Google Scholar 

  • Rodriguez J, Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A (2012) Modeling the fluid phase behaviour of aqueous mixtures of multifunctional alkanolamines and carbon dioxide using transferable parameters with the SAFT-VR approach. Mole Phys 110:11–12

    Google Scholar 

  • Ruiz GJ, Kim SB, Moes L, Linninger AA (2010) Rigorous synthesis and simulation of complex distillation networks. AIChE J 57:136–148

    Article  Google Scholar 

  • Seferlis P, Hrymak AN (1994) Optimization of distillation units using collocation models. AIChE J 40:813–825

    Article  CAS  Google Scholar 

  • Seferlis P, Damartzis T, Dalaouti N (2010) Efficient reduced order dynamic modeling of complex reactive and multiphase separation processes using orthogonal collocation on finite elements. In: Banga JR, Georgiadis MC, Pistikopoulos EN (eds) process systems engineering, vol 7., dynamic process modelingWiley VCH, London, pp 203–237

    Google Scholar 

  • Swartz CLE, Stewart WE (1986) A collocation approach to distillation column design. AIChE J 32:1832–1838

    Article  CAS  Google Scholar 

  • Towler GP, Shethna HL, Cole B, Hajdik B (1997) Improved absorber-stripper technology for gas sweetening to ultra-low H2O concentrations. In: Proceedings of the 76th GPA annual convention, Tulsa, pp 93–100

  • Won R, Condorelli P, Sherffius J, Mariz CL (2003) Split-flow process and apparatus. US Patent 6,654,446 B1

Download references

Acknowledgments

The authors would like to thank Prof. Claire Adjiman, Prof. Amparo Galindo, Prof. George Jackson, and Dr. Alexandros Chremos, of Imperial College London for providing the SAFT-VR thermodynamic models. The financial support of the European Commission under contract FP7-ENERGY-2011-282789 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Seferlis.

Appendix 1

Appendix 1

The parameters A m,k and B m,k for the polynomial approximation of the component partial pressures and the liquid phase enthalpy departure with CO2 loading and temperature as calculated using the SAFT-VR equation of state (Eqs. 25 and 26) are listed in the following Tables 4, 5, 6, and 7.

Table 4 Parameters for the polynomial approximation of CO2 partial pressure in the 30 wt% MEA aqueous solution
Table 5 Parameters for the polynomial approximation of H2O partial pressure in the 30 wt% MEA aqueous solution
Table 6 Parameters for the polynomial approximation of MEA partial pressure in the 30 wt% MEA aqueous solution
Table 7 Parameters for the polynomial approximation of H dep in the 30 wt% MEA aqueous solution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damartzis, T., Papadopoulos, A.I. & Seferlis, P. Optimum synthesis of solvent-based post-combustion CO2 capture flowsheets through a generalized modeling framework. Clean Techn Environ Policy 16, 1363–1380 (2014). https://doi.org/10.1007/s10098-014-0747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0747-2

Keywords

Navigation