Skip to main content

Advertisement

Log in

Life cycle impact assessment research developments and needs

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Life cycle impact assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It is recognized that the short list of impact categories has remained fairly constant, even after extensive discussions. The termination point of impact assessment modeling (e.g., inventory, midpoint, endpoint, damage, single score) has been discussed extensively, and the advantages and disadvantages of these different levels are well published. Early LCIAs were conducted independent of system location, but now site-specificity has been a research topic for many of the local and regional categories (e.g., acidification, eutrophication, and smog formation). In reality, even though many advances have been made in site-specific analysis, the life cycle assessment (LCA) case studies are often limited to their inventory data, and as a result, most LCAs are still site-generic even though the LCIA methodologies exist to allow for site-specific analysis. Pollutant-based impacts have received the most research effort and support in the past, but resource depletion categories (e.g., land use and water use) are now recognized as being highly complex, site-specific, data intensive, and important for contributing toward the sustainability of the planet. Efforts in these categories are still in the neophyte stages and are expected to have the greatest advances in the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson-Skold Y, Grennfelt P, Pleijel K (1992) Photochemical ozone creation potentials. J Air Waste Manag 42:1152–1158

    Google Scholar 

  • Anton A, Castells F, Montero JI (2007) Land use indicators in life cycle assessment. Case study: the environmental impact of Mediterranean greenhouses. J Clean Prod 15:432–438

    Article  Google Scholar 

  • Arpke A, Hutzler N (2006) Domestic water use in the United States—a life-cycle approach. J Ind Ecol 10:169–184

    Article  Google Scholar 

  • Baitz M, Kreissig J, Wolf M (2000) Method for integrating land use into life-cycle-assessment (LCA). Forstwissenschaftliches Centralblatt 119:128–149

    Article  Google Scholar 

  • Bare JC (2000) LCIA midpoints vs. endpoints—how do we decide? International workshop on LCIA midpoints vs. endpoints—the sacrifices and the benefits

  • Bare JC (2003) Workshop introduction & background of meta model for LCA taxonomy. Taxonomy workshop

  • Bare JC, Gloria TP (2005) A closer look at life cycle impact assessment for the building design and construction industry. Building Design and Construction, Nov 22–24

  • Bare JC, Gloria TP (2008) Environmental impact assessment taxonomy providing comprehensive coverage of midpoints, endpoints, damages, and areas of protection. J Clean Prod 16:1021–1035

    Article  Google Scholar 

  • Bare JC, Udo de Haes HA, Pennington DW (1999) Life cycle impact assessment sophistication. Int J Life Cycle Assess 4:299–306

    Article  Google Scholar 

  • Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA (2000a) Life cycle impact assessment midpoints vs. endpoints—the sacrifices and the benefits. Int J Life Cycle Assess 5:319–326

    Article  Google Scholar 

  • Bare JC, Pennington DW, Udo de Haes HA (2000b) An international workshop on life cycle impact assessment sophistication, EPA/600/R-00/023

  • Bare J, Fava J, Hertwich E, Hofstetter P, Huppes G, Jolliet O, Krewitt W, Lindeijer E, Muller-Wenk R, Owens W, Pennington D, Steen B, Tukker A, Udo de Haes H, Weidema B (2002) The areas of protection debate. In Klopffer W (ed) Gate to EHS: global LCA village

  • Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI—the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  • Bare J, Gloria T, Norris G (2006) Development of the method and U.S. normalization database for life cycle impact assessment and sustainability metrics. Environ Sci Technol 40:5108–5115

    Article  Google Scholar 

  • Barnthouse L, Fava J, Humphreys K, Hunt R, Laibson L, Noesen S, Norris G, Owens J, Todd J, Vigon B, Weitz K, Young J (1997) Life-cycle impact assessment: the state of the art. SETAC Books, Pensacola

    Google Scholar 

  • Bellekom S, Potting J, Benders R (2006) Feasibility of applying site-dependent impact assessment of acidification in LCA. Int J Life Cycle Assess 11:417–424

    Article  Google Scholar 

  • Bengtsson M, Steen B (2000) Weighting in LCA—approaches and applications. Environ Prog 19:101–109

    Article  Google Scholar 

  • Blonk H, Lafleur M, Spriensma R, Goedkoop M, Stevens S, Agterberg A, van Engelenburg B, Blok K (1997) Normalization figures for Dutch territory, Dutch consumption, and West European territory. http://www.pre.nl/normal.html. Accessed 28 Sept 2005

  • Brand G, Braunschweig A, Scheidegger A, Schwank O (1998) Weighting in ecobalances with the ecoscarcity method—ecofactors 1997, BUWAL Series 297

  • Breedveld L, Lafleur M, Blonk H (1999) A framework for actualizing normalization data in LCA: experiences in the Netherlands. Int J Life Cycle Assess 4:213–220

    Article  Google Scholar 

  • Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments—a combined model of simulation and approximation. Int J Life Cycle Assess 9:216–226

    Article  Google Scholar 

  • Derwent RG, Jenkin ME, Saunders SM (1996) Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos Environ 30:181–199

    Article  Google Scholar 

  • Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441

    Article  Google Scholar 

  • Energy Information Administration—U.S. Department of Energy (2003) Annual energy review, DOE/EIA-0384

  • Fava J, Denison R, Jones B, Curran M, Vigon B, Selke S, Barnum J (1991) A technical framework for life-cycle assessment. SETAC Books, Pensacola

    Google Scholar 

  • Fava J, Consoli F, Denison R, Dickson K, Mohin T, Vigon B (1993) A conceptual framework for life-cycle impact assessment. SETAC Books, Pensacola

    Google Scholar 

  • Fava J, Jensen A, Lindfors L, Pomper S, Smet Bd, Warren J, Vigon B (1994) Life-cycle assessment data quality: a conceptual framework. SETAC Books, Pensacola

    Google Scholar 

  • Finnveden G, Hofstetter P, Bare J, Basson L, Ciroth A, Mettier T, Seppala J, Johansson J, Norris G, Volkwein S (2002) Normalization, grouping, and weighting in life cycle impact assessment. In: Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer E, Muller-Wenk R, Olsen S, Pennington D, Potting J, Steen B (eds) Life cycle impact assessment: striving towards best available practice. SETAC, Pensacola

    Google Scholar 

  • Finnveden G, Eldh P, Johansson J (2006) Weighting in LCA based on ecotaxes—development of a mid-point method and experiences from case studies. Int J Life Cycle Assess 11:81–88

    Article  Google Scholar 

  • Geisler G, Hellweg S, Hungerbuhler K (2005) Uncertainty analysis in life cycle assessment (LCA): case study on plant-protection products and implications for decision making. Int J Life Cycle Assess 10:184–192

    Article  Google Scholar 

  • Gloria TP, Bare JC (2003) Taxonomy of impact categories and the taxonomy structure: results from the UNEP/SETAC/EPA Hamburg workshop. In: LCA-LCM

  • Gloria TP, Lippiatt BC, Cooper J (2007) Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environ Sci Technol 41:7551–7557

    Article  Google Scholar 

  • Goedkoop M (1995) The Eco-indicator 95. Pre consultants

  • Goedkoop M, Spriensma R (1999) The Eco-indicator 99: a damage orientated method for life cycle impact assessment. Ministry of VROM, The Hague

    Google Scholar 

  • Goedkoop M, Demmers M, Collignon M (1996) The Eco-indicator 95. Pre consultants

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level, 1st edn. Report 1: characterisation

  • Hauschild M, Wenzel H (1998) Environmental assessment of products. Volume 2: Scientific background. Chapman & Hall, London

    Google Scholar 

  • Hauschild MZ, Potting J, Hertel O, Schopp W, Bastrup-Birk A (2006) Spatial differentiation in the characterisation of photochemical ozone formation—the EDIP2003 methodology. Int J Life Cycle Assess 11:72–80

    Article  Google Scholar 

  • Hauschild M, Huijbregts M, Jolliet O, Margni M, MacLeod M, van de Meent D, Rosenbaum R, McKone T (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42:7032–7036

    Article  Google Scholar 

  • Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992a) Environmental life cycle assessment of products: guide and backgrounds (part 1). CML, Leiden

    Google Scholar 

  • Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo De Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992b) Environmental life cycle assessment of products: guide and backgrounds (part 2). CML, Leiden

    Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. CML report 138—section substances and products. Centre of Environmental Science (CML), Leiden University, Leiden

    Google Scholar 

  • Hellweg S, Hofstetter TB, Hungerbuhler K (2003) Discounting and the environment—should current impacts be weighted differently than impacts harming future generations? Int J Life Cycle Assess 8:8–18

    Article  Google Scholar 

  • Hertwich E (1999) Value judgements and the public right—rebuttal to Marsmann et al. on ISO 14042. Int J Life Cycle Assess Gate EHS Glob LCA Village

  • Hertwich EG, Hammitt JK (2001a) A decision-analytic framework for impact assessment—part 2: midpoints, endpoints, and criteria for method development. Int J Life Cycle Assess 6:265–272

    Article  Google Scholar 

  • Hertwich EG, Hammitt JK (2001b) A decision-analytic framework for impact assessment—part I: LCA and decision analysis. Int J Life Cycle Assess 6:5–12

    Article  Google Scholar 

  • Hertwich E, Pease W (1998) ISO 14042 restricts use and development of impact assessment. Int J Life Cycle Assess 3:180–181

    Article  Google Scholar 

  • Hertwich E, McKone T, Pease W (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19:1193–1204

    Google Scholar 

  • Hertwich EG, McKone TE, Pease WS (2000) A systematic uncertainty analysis of an evaluative fate and exposure model. Risk Anal 20:439–454

    Article  Google Scholar 

  • Hertwich EG, Pennington DW, Bare JC (2002) Introduction. In: Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer EW, Muller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (eds) Life cycle impact assessment: striving towards best available practice. SETAC, Pensacola

    Google Scholar 

  • Hettelingh JP, Posch M, Potting J (2005) Country-dependent characterisation factors for acidification in Europe—a critical evaluation. Int J Life Cycle Assess 10:177–183

    Article  Google Scholar 

  • Heuvelmans G, Muys B, Feyen J (2005) Extending the life cycle methodology to cover impacts of land use systems on the water balance. Int J Life Cycle Assess 10:113–119

    Article  Google Scholar 

  • Hofstetter P (1998) Perspectives in life cycle impact assessment: a structured approach to combine models of the technosphere, ecosphere and valuesphere. Kluwer, Boston

    Google Scholar 

  • Houghton JT, Filho LGM, Bruce JP, Lee H, Callander A, Haites EF (1995) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC 1992 IS92 emission scenarios, New York

  • Huijbregts MAJ (1999) Priority assessment of toxic substances in the frame of LCA. Development and application of the multi-media fate, exposure and effect model USES-LCA. Interfaculty Department of Environmental Science, Faculty of Environmental Sciences, University of Amsterdam, Amsterdam

  • Huijbregts M (2001) Uncertainty and variability in environmental life-cycle assessment

  • Huijbregts MAJ, Seppala J (2001) Life cycle impact assessment of pollutants causing aquatic eutrophication. Int J Life Cycle Assess 6:339–343

    Article  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinee JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Sleeswijk AW, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41:541–573

    Article  Google Scholar 

  • Huijbregts MAJ, Breedveld L, Huppes G, de Koning A, van Oers L, Suh S (2003a) Normalisation figures for environmental life-cycle assessment—the Netherlands (1997/1998), Western Europe (1995) and the world (1990 and 1995). J Clean Prod 11:737–748

    Article  Google Scholar 

  • Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijnders L (2003b) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37:2600–2608

    Article  Google Scholar 

  • International Standards Organization (1997) Environmental management—life cycle assessment—life cycle impact assessment. International Standard ISO14040:1997(E)

  • International Standards Organization (2000) Environmental management—life cycle assessment—life cycle impact assessment. International Standard ISO14042:2000(E)

  • International Standards Organization (2006) Environmental management—life cycle assessment—life cycle impact assessment. ISO 14042

  • IPCC—Intergovernmental Panel on Climate Change (1996) In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Intergovernmental Panel on Climate Change, Cambridge

  • IPCC—Intergovernmental Panel on Climate Change (2001a) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2001b) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Table 6.7 and Table 6.8. Cambridge University Press, Cambridge

  • IPCC—Intergovernmental Panel on Climate Change (2005) In: Metz B, Kuijpers L, Solomon S, Andersen SO, Davidson O, Pons J, de Jager D, Kestin T, Manning M, Meyer L (eds) Special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons, special report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge

  • Itsubo N, Inaba A (2003) A new LCIA method: LIME has been completed. Int J Life Cycle Assess 8(5):305

    Article  Google Scholar 

  • Itsubo N, Sakagami M, Washida T, Kokubu K, Inaba A (2004) Weighting across safeguard subjects for LCIA through the application of conjoint analysis. Int J Life Cycle Assess 9:196–205

    Article  Google Scholar 

  • Jenkin ME, Hayman GD (1999) Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos Environ 33:1275–1293

    Article  Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Potting J, Pennington D, Rebitzer G, Schenck R, Stewart M, Haes HUd, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP-SETAC Life Cycle Initiative. Int J Life Cycle Assess 9:394–404

    Article  Google Scholar 

  • Koellner T (2002) Land use in product life cycles and its consequences for ecosystem quality. Int J Life Cycle Assess 7:130–130

    Article  Google Scholar 

  • Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment—part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12:16–23

    Article  Google Scholar 

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment—part 2: generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13:32–48

    Article  Google Scholar 

  • Labouze E, Honore U, Moulay L, Couffignal B, Beekmann M (2004) Photochemical ozone creation potentials—a new set of characterization factors for different gas species on the scale of Western Europe. Int J Life Cycle Assess 9:187–195

    Article  Google Scholar 

  • Lenzen M (2006) Uncertainty in impact and externality assessments—implications for decision-making. Int J Life Cycle Assess 11:189–199

    Article  Google Scholar 

  • Lin MY, Zhang SS, Chen Y (2005) Distance-to-target weighting in life cycle impact assessment based on Chinese environmental policy for the period 1995–2005. Int J Life Cycle Assess 10:393–398

    Article  Google Scholar 

  • Lindeijer E (1996) Normalization and valuation. In: Udo de Haes HA (ed) Towards a methodology for life cycle impact assessment. SETAC-Europe, Brussels

    Google Scholar 

  • Lindeijer E, Alfers A (2001) Summary of step A of the Delfts Cluster Research Programme on land use in LCA. Int J Life Cycle Assess 6:186

    Article  Google Scholar 

  • Lindeijer E, Kampen M, Fraanje P (1998) Biodiversity and life support indicators for land use impacts in LCA, IVAM and IBN/DLO

  • Lo SC, Ma HW, Lo SL (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Sci Total Environ 340:23–33

    Article  Google Scholar 

  • Lundie S, Huijbregts MAJ, Rowley HV, Mohr NJ, Feitz AJ (2007) Australian characterisation factors and normalisation figures for human toxicity and ecotoxicity. J Clean Prod 15:819–832

    Article  Google Scholar 

  • Margni M, Gloria T, Bare J, Seppälä J, Steen B, Struijs J, Toffoletto L, Jolliet O (2008) Evaluation of category indicators and characterization models: application to eutrophication, Task Force 1 of the UNEP SETAC Life Cycle Initiative

  • Marsmann M, Olaf Ryding S, Udo de Haes H, Fava J, Owens W, Brady K, Saur K, Schenck R (1999) Letters to the editor—in reply to Hertwich & Pease, Int. J. LCA 3 (4) 180–181, “ISO 14042 restricts use and development of impact assessment”. Int J Life Cycle Assess 4:65

    Article  Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity—proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13:22–31

    Article  Google Scholar 

  • Mila i Canals L, Clift R, Basson L, Hansen Y, Brandao M (2006) Expert workshop on land use impacts in life cycle assessment (LCA). Int J Life Cycle Assess 11:363–368

    Article  Google Scholar 

  • Mila i Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Muller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15

    Article  Google Scholar 

  • Mila i Canals L, Romanya J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in life cycle assessment (LCA). J Clean Prod 15:1426–1440

    Article  Google Scholar 

  • Norris G (2001) The requirement for congruence in normalization. Int J Life Cycle Assess 6:85–88

    Google Scholar 

  • Norris G (2003) Impact characterization in the tool for the reduction and assessment of chemical and other environmental impacts—methods for acidification, eutrophication, and ozone formation. J Ind Ecol 6:79–101

    Article  Google Scholar 

  • Owens JW (2001) Water resources in life cycle impact assessment: considerations in choosing category indicators. J Ind Ecol 5:37–54

    Article  Google Scholar 

  • Potting J, Hauschild MZ (2006) Spatial differentiation in life cycle impact assessment—a decade of method development to increase the environmental realism of LCIA. Int J Life Cycle Assess 11:11–13

    Article  Google Scholar 

  • Potting J, Schopp W, Blok K, Hauschild M (1998) Comparison of the acidifying impact from emissions with different regional origin in life-cycle assessment. J Hazard Mater 61:155–162

    Article  Google Scholar 

  • Rosenbaum R, Bachmann T, Huijbregts M, Jolliet O, Juraske R, Koehler A, Larsen H, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity. Int J Life Cycle Assess 7:532–546

    Article  Google Scholar 

  • Ross S, Evans D, Webber M (2002) How LCA studies deal with uncertainty. Int J Life Cycle Assess 7:47–52

    Article  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929–1942

    Article  Google Scholar 

  • Schmidt WP, Sullivan J (2002) Weighting in life cycle assessments in a global context. Int J Life Cycle Assess 7:5–10

    Article  Google Scholar 

  • Seppala J (2007) On the meaning of fuzzy approach and normalisation in life cycle impact assessment. Int J Life Cycle Assess 12:464–469

    Article  Google Scholar 

  • Seppala J, Hamalainen RP (2001a) On the meaning of the distance-to-target weighting method and normalisation in life cycle impact assessment. Int J Life Cycle Assess 6:211–218

    Article  Google Scholar 

  • Seppala J, Hamalainen RP (2001b) Relationships between weighting factors and normalisation in life cycle impact assessment. Int J Life Cycle Assess 6:218–218

    Article  Google Scholar 

  • Seppala J, Knuuttila S, Silvo K (2004) Eutrophication of aquatic ecosystems—a new method for calculating the potential contributions of nitrogen and phosphorus. Int J Life Cycle Assess 9:90–100

    Article  Google Scholar 

  • Seppala J, Posch M, Johansson M, Hettelingh JP (2006) Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator. Int J Life Cycle Assess 11:403–416

    Article  Google Scholar 

  • Sleeswijk AW, van Oers L, Guinee JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ 390:227–240

    Article  Google Scholar 

  • Soares SR, Toffoletto L, Deschenes L (2006) Development of weighting factors in the context of LCIA. J Clean Prod 14:649–660

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 33–34

  • Spitzley DV, Tolle DA (2008) Evaluating land-use impacts: selection of surface area metrics for life-cycle assessment of mining. J Ind Ecol 8:11–21

    Article  Google Scholar 

  • Steen B (1999a) A systematic approach to environmental priority strategies in products development (EPS). Version 2000—general system characteristics—CPM report 1999:4. Chalmers University of Technology, Gotheburg

  • Steen B (1999b) A systematic approach to environmental priority strategies in products development (EPS). Version 2000—models and data—CPM report 1999:5. Chalmers University of Technology, Gotheburg

  • Strauss K, Brent AC, Hietkamp S (2006) Characterisation and normalisation factors for life cycle impact assessment mined abiotic resources categories in South Africa—the manufacturing of catalytic converter exhaust systems as a case study. Int J Life Cycle Assess 11:162–171

    Article  Google Scholar 

  • Swan G (1998) Evaluation of land use in life cycle assessment. Center for Environmental Assessment of Product and Material Systems (CPM), Chalmers University of Technology, Goteborg

  • Toffoletto L, Bulle C, Godin J, Reid C, Deschenes L (2007) LUCAS—A new LCIA method used for a Canadian-specific context. Int J Life Cycle Assess 12:93–102

    Article  Google Scholar 

  • Udo de Haes HA (1996) Towards a methodology for life cycle impact assessment. SETAC Books, Brussels

    Google Scholar 

  • Udo de Haes HA (1998) ISO’s compromise on comparative assertions in life cycle impact assessment. J Ind Ecol 2:4–7

    Article  Google Scholar 

  • Udo de Haes HA (2006) How to approach land use in LCIA or, how to avoid the Cinderella effect? Int J Life Cycle Assess 11:219–221

    Article  Google Scholar 

  • Udo de Haes H, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer E, Muller-Wenk R, Olsen S, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. SETAC Books, Pensacola

    Google Scholar 

  • UNFCCC—The United Nations Framework Convention on Climate Change (2000) Review of the implementation of commitments and of other provisions of the convention, national communications: greenhouse gas inventories from parties included in Annex 1 to the convention. UNFCCC Guidelines on Reporting and Review. Table 1: 1995 IPCC global warming potential (GWP) values based on the effects of greenhouse gases over a 100-year time horizon. As provided by the IPCC in its Second Assessment Report, p 14

  • US Environmental Protection Agency (1989a) Exposure factors handbook. Office of Health and Environmental Assessment, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (1989b) Risk assessment guidance for superfund. Volume I. Human health evaluation manual (part A). Office of Emergency and Remedial Response, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (1997) Exposure factors handbook. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Green Building Council (2008a) Introduction to the LEED 2009 credit weighting tool

  • US Green Building Council (2008b) LEED 2009 credit weighting

  • US Green Building Council (2008c) LEED 2009 weightings background

  • van Oers L, Huppes G (2001) LCA normalization factors for the Netherlands, Western Europe and the World. Int J Life Cycle Assess 6:256

    Article  Google Scholar 

  • Van Zelm R, Huijbregts MAJ, Van Jaarsveld HA, Reinds GJ, De Zwart D, Struijs J, Van de Meent D (2007) Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ Sci Technol 41:922–927

    Article  Google Scholar 

  • Vogtlander JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. J Clean Prod 12:47–57

    Article  Google Scholar 

  • Wagendorp T, Gulinck H, Coppin P, Muys B (2006) Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy 31:112–125

    Article  Google Scholar 

  • Wenzel H, Hauschild M (1997) Environmental assessment of products. Volume 1: Methdology, tools and case studies in product development. Chapman & Hall, London

    Google Scholar 

  • WMO—World Meteorological Organization (1999) Scientific assessment of ozone depletion: 1998. Global ozone research and monitoring project—report no. 44, Geneva, Switzerland

  • WMO—World Meteorological Organization (2003) Scientific assessment of ozone depletion: 2002. Global ozone research and monitoring project—report no. 47, Geneva, Switzerland, p 498, Table 1.6–1.7

  • WMO—World Meteorological Organization (2007) Scientific assessment of ozone depletion: 2006. Global ozone research and monitoring project—report no. 50, Geneva, Switzerland, p 572

  • Wurtenberger L, Koellner T, Binder CR (2006) Virtual land use and agricultural trade: estimating environmental and socio-economic impacts. Ecol Econ 57:679–697

    Article  Google Scholar 

  • Zhou XY, Schoenung JM (2007) An integrated impact assessment and weighting methodology: evaluation of the environmental consequences of computer display technology substitution. J Environ Manag 83:1–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane C. Bare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bare, J.C. Life cycle impact assessment research developments and needs. Clean Techn Environ Policy 12, 341–351 (2010). https://doi.org/10.1007/s10098-009-0265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-009-0265-9

Keywords

Navigation